Identification Techniques I

  • Ioannis A. Kozaris
  • Eleni Pavlidou
  • Reiner Salzer
  • D. Capitani
  • A. Spinella
  • E. Caponetti
Part of the Lecture Notes in Chemistry book series (LNC, volume 79)


Infrared (IR) and Raman spectroscopy have a high potential for characterisation of material. Extensive series of wet chemical analysis may be substituted by a single spectroscopic measurement followed by detailed chemometric data evaluation. Topics of this chapter are: (i) basics of IR and Raman spectroscopy, (ii) the registration of “correct” spectra, and (iii) spectra evaluation. Dedicated applications in the area of conservation science are collected in separate chapters. The infrared (IR) spectrum is often called the fingerprint of a substance. An IR spectrum identifies a substance like a human fingerprint. Due to their origin the features of an IR spectrum are bands, not peaks. They indicate vibrations within the molecular framework. Such vibrations are excited by irradiation with infrared light. The infrared spectral range joins the red end of the visible range, it extends from 780 to 1 mm wavelength. Radiation in this spectral range is of low energy, it does not harm material. Commercial IR spectrometers are available since 1945. They dominated the field of structural analysis (identification) of molecular substances until NMR spectrometers became affordable. Nowadays small and easy-to-use IR spectrometers are abundantly available in laboratories [8]. Raman spectroscopy is complementary to IR spectroscopy. It is named after its discoverer, the Indian Nobel Laureate Sir C. V. Raman. Molecular vibrations are excited here by irradiation with intense visible or near IR radiation. The excitation mechanism is different from the excitation of vibrations by IR light, which results in some well-defined differences between IR and Raman spectra of the same sample. For this reason IR and Raman spectra are complementary, not identical. The complementarity of IR and Raman spectra provides additional information about molecular properties of the sample. The need for intense light sources hampered Raman spectroscopy until the advent of lasers. Today a range of miniaturised lasers and convenient fibre-probes are available, which permit the construction of small portable Raman spectrometers for difficult field applications.


Nuclear Magnetic Resonance Secondary Electron Backscatter Electron Attenuate Total Reflection Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    JEOL Ltd (2007) Invitation to the SEM world. service advanced technology, JEOL, JapanGoogle Scholar
  2. 2.
    Williams DB, Barry Carter C (2004) Transmission electron microscopy: a textbook for Ma-terials science. Springer, New YorkGoogle Scholar
  3. 3.
    Zorba T, Pavlidou E, Stanojlovic M, Bikiaris D, Paraskevopoulos KM, Nikolic V, Nikolic PM (2006) Technique and palette of XIIIth century painting in the monastery of Mileseva. Appl Phys A 83:719–725CrossRefGoogle Scholar
  4. 4.
    Clark RJH, Dines TJ, Kurmoo M (1983) On the nature of the sulfur chromophores in ultramarine blue, green, violet, and pink and of the selenium chromophore in ultramarine selenium: characterization of radical anions by electronic and resonance Raman spectroscopy and the determination of their excited-state geometries. Inorg Chem 22:2766CrossRefGoogle Scholar
  5. 5.
    Ganitis V, Pavlidou E, Zorba F, Paraskevopoulos KM, Bikiaris D (2004) A Post-Byzantine Icon of St Nicholas painted on a leather support microanalysis and characterisation of technique. J Cult Heritage 5:349–360CrossRefGoogle Scholar
  6. 6.
    Pistofidis N, Vourlias G, Pavlidou E, Dilo T, Civici N, Stamati F, Gjongecaj S, Prifti I, Bilani O, Stergioudis G, Polychroniades EK (2006) On the comparative study of three silver coins of the third century BC minted in Korkyra, Dyrrachion and by the Illyrian king Monounios. Appl Phys A 83:637–642CrossRefGoogle Scholar
  7. 7.
    Froh J (2004) Archaeological ceramics studied by scanning electron microscopy. Hyperfine Interact 154:159–176Google Scholar
  8. 8.
    Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, HobokenCrossRefGoogle Scholar
  9. 9.
    Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Brooks Cole, PhiladelphiaGoogle Scholar
  10. 10.
    Schrader B (1989) Ramn/infrared atlas of organic compounds. VCH, WeinheimGoogle Scholar
  11. 11.
    Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and Raman spectra. Wiley, HobokenCrossRefGoogle Scholar
  12. 12.
    Gauglitz G, Vo-Dinh T (2003) Handbook of spectroscopy. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  13. 13.
    Salzer R, Siesler HW (2009) Infrared and Raman spectroscopic imaging. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Analyt Chem 24:1253–1294CrossRefGoogle Scholar
  15. 15.
    Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New YorkGoogle Scholar
  16. 16.
    Degen IA, Newman GA (1993) Raman spectra of inorganic ions. Spectrochim Acta 49A:859–887Google Scholar
  17. 17.
    Gruchow F (2007) IR-Spektroskopische Untersuchungen am Holzträger bemalter historischer Kunstobjekte. Thesis, TU DresdenGoogle Scholar
  18. 18.
    La Parola V, Longo A, Venezia AM, Spinella A, Caponetti E (2010) Interaction of gold with co-condensed and grafted HMS-SH silica: A 29Si 1H CP-MAS NMR spectroscopy, XRD, XPS and Au LIII EXAFS StudyEur. J Inorg Chem 23:3628–3635Google Scholar
  19. 19.
    Conte P, Smejkalovà D, Piccolo A, Spaccini R (2008) Evaluation of the factors affecting direct polarization solid state 31P-NMR spectroscopy of bulk soils Eur. J Soil Sci 59:584–591CrossRefGoogle Scholar
  20. 20.
    Hedesiu C, Demco DE, Kleppinger R, Vanden Poel G, Gijsbers W, Bluemich B, Remerie K, Litvinov VM (2007) Effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in isotactic polypropylene studied by proton solid state NMR. SAXS and DSC Macromol 40:3977–3989CrossRefGoogle Scholar
  21. 21.
    Alemany LB (2007) Solid state NMR analysis of fluorinated single-walled carbon nanotubes: assessing the extent of fluorination Chem. Mater 19:735Google Scholar
  22. 22.
    Hoffmann A, Sebastiani D, Sugiono E, Yun S, Kim KS, Spiess HW, Schnell I (2004) Solvent molecules trapped in supramolecular organic nanotubes: a combined solid-State NMR and DFT study chem. Phys Lett 388:164–169Google Scholar
  23. 23.
    Becker ED (2000) High resolution NMR theory and chemical applications, Academic Press, Waltham ISBN: 0-12-084662-4Google Scholar
  24. 24.
    Macomber RS (1998) A complete introduction to modern NMR spectroscopy J. Wiley & Sons ISBN: 0-471-15736-8Google Scholar
  25. 25.
    Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053CrossRefGoogle Scholar
  26. 26.
    Stebbins JF, Kroeker S, Lee SK, Kiczenski TJ (2000) Quantification of five- and six-coordinated aluminum in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR. J Non-Cryst Solids 275:1–6CrossRefGoogle Scholar
  27. 27.
    Demortier G (2004) PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops Giza. Nucl Instr Meth Phys Res B 226:98–109CrossRefGoogle Scholar
  28. 28.
    Cervantes J, Mendoza-Diaz G, Alvarez-Gasca DE, Martinez-Richa A (1999) Applications of 29Si and 27Al magic angle spinning nuclear magnetic resonance of the building materials of historical monuments. Solid State Nucl Mag 13:263–269CrossRefGoogle Scholar
  29. 29.
    Hosler D, Burkett SL, Tarkanian MJ (1999) Prehistoric polymers: rubber processing in ancient Mesoamerica. Science 284:1988–1991CrossRefGoogle Scholar
  30. 30.
    Rijniers LA (2004) PhD thesis, Technical university, EindhovenGoogle Scholar
  31. 31.
    Bardet M, Gerbaud G, Trân QK, Hediger S (2007) Study of interactions between polyethylene glycol and archaeological wood components by C13 high-resolution solid-state CP-MAS NMR. J Archaeol Sci 34:1670–1676CrossRefGoogle Scholar
  32. 32.
    Lambert JB Frye JS Lee TA Welch CJ Poinar GO (1989) Analysis of mexican amber by carbon-13 NMR spectroscopy, in archaeological chemistry IV (ed Allen RO), 381–388 Advances in Chemistry Ser. 220, Am Chem Soc, WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ioannis A. Kozaris
    • 1
  • Eleni Pavlidou
    • 2
  • Reiner Salzer
    • 3
  • D. Capitani
    • 4
  • A. Spinella
    • 5
  • E. Caponetti
    • 5
    • 6
  1. 1.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Physics, School of ScienceAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of ChemistryDresden University of TechnologyDresdenGermany
  4. 4.Magnetic Resonance Laboratory “Annalaura Segre”Institute of Chemical Methodologies (IMC), National Research Council (CNR)MonterotondoItaly
  5. 5.Centro Grandi ApparecchiatureUniversità di PalermoPalermoItaly
  6. 6.Dipartimento di Chimica “S. Cannizzaro”Università di Palermo, Parco d’ Orleans IIPalermoItaly

Personalised recommendations