Separation Techniques

  • Catherine Vieillescazes
  • Isabel Sierra
  • Sonia Morante-Zarcero
Part of the Lecture Notes in Chemistry book series (LNC, volume 79)


This chapter deals with the importance of analytical chemistry and more particularly the separation techniques in the field of conservation science. High performance liquid chromatography (HPLC) and gas chromatography (GC) are mainly developed. The principles of the methods, some information about the methodology and their evaluation are discussed.


High Performance Liquid Chromatography High Performance Liquid Chromatography Capillary Electrophoresis Capillary Zone Electrophoresis Gambogic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burgot G, Burgot JL (2002) Méthodes Instrumentales d’Analyse Chimique. Tec et Doc, ParisGoogle Scholar
  2. 2.
    Poole CF (2003) The essence of chromatography. Elsevier, BristolGoogle Scholar
  3. 3.
    Chavanne M, Beaudoin GJ, Jullien A, Flamand E (1999) Chimie organique expérimentale. Belin, ParisGoogle Scholar
  4. 4.
    Defranceschi M (1990) 144 manipulations de chimie générale et minérale. Ellipses, ParisGoogle Scholar
  5. 5.
    Douglas A, Skoog F, Holler J, Timothy A, Nieman T (2003) Principes d’Analyse Instrumentales De Boeck. Paris et, BruxellesGoogle Scholar
  6. 6.
    Rouessac F (2004) Analyse chimique (méthodes et techniques instrumentales modernes). Masson, ParisGoogle Scholar
  7. 7.
    Arpino P, Prevôt A, Serpinet J, Tranchant J, Vergnol A, Wittier P (1995) Manuel pratique de chromatographie en phase gazeuse. Masson, ParisGoogle Scholar
  8. 8.
    Rosset R, Caude M, Jardy A (1991) Chromatographies en phase liquide et supercritique. Masson, ParisGoogle Scholar
  9. 9.
    Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. 1. A theory of chromatography. 2. Application of the microdetermination of the higher monoaminoacids in proteins. Biochem J 35:1358–1368Google Scholar
  10. 10.
    Mills JS, White R (1994) The organic chemistry of museum objects. Butterworth Heinemann, LondonGoogle Scholar
  11. 11.
    Shedrinsky AM, Wampler TP, Indictor N, Baer NS (1989) Application of analytical pyrolysis to problems in art and archaeology: a review. J Anal Appl Pyrol 15:393–412CrossRefGoogle Scholar
  12. 12.
    Hovaneissian M, Archier P, Mathe C, Vieillescazes C (2006) Contribution de la chimie analytique à l’étude des exsudats végétaux styrax, storax et benjoin. C R Chim 9(9):1192–1202CrossRefGoogle Scholar
  13. 13.
    Regert M, Rolando C (1996) Archéologie des résidus organiques: De la chimie analytique à l’archéologie : un état de la question. Techné 3:118–128Google Scholar
  14. 14.
    Mejanelle P, Bleton J, Goursaud S, Tchapla A (1996) Analyse de baumes de momification d’Egypte ancienne par chromatographie gazeuse capillaire: spectrométrie de masse. Analusis Magazine 24(7):16–20Google Scholar
  15. 15.
    Bleton J, Coupry C, Sansoulet J (1996) Approche d’étude des encres anciennes. Stud Conserv 41:95–108CrossRefGoogle Scholar
  16. 16.
    Connan J, Deschene O (1996) Le bitume à Suse: Collection du Musée du Louvre Réunion des Musées Nationaux et Elf Aquitaine Production. Paris et Pau, ParisGoogle Scholar
  17. 17.
    Colinart S (1987) Chapter IV: Matériaux constitutifs. In: Sculptures en cire de l’ancienne Egypte à l’art abstrait, Ministère de la Culture et de la Communication. Editions de la réunion des musées nationaux, Paris PP 29–57Google Scholar
  18. 18.
    Ploeger R, Scalaron O, Chiantore O (2008) The characterization of commercial artists’ alkyd paints. J Cult Herit 9(4):412–419CrossRefGoogle Scholar
  19. 19.
    Quye A, Wouters J, Boon JJ (1996) A preliminary study of light-ageing effect on the analysis of natural flavanoid-dye wools by photodiode array HPLC and by direct temperature mass spectrometry. In: Commitee for Conservation. ICOM, Edimbourg 2:704–713 Google Scholar
  20. 20.
    Szostek B, Orska-Gawrys J, Surowiec I (1012) Trojanowicz M (2003) Investigation of natural dyes occurring in historical Coptic textiles by high-performance liquid chromatography with UV–Vis and mass spectrometric detection. J Chromatogr 2:179–192Google Scholar
  21. 21.
    Wallert A (1996) Tannins of the parchment of the Dead Sea scrolls. In: committee for conservation ICOM. Edimbourg, 2:560–564Google Scholar
  22. 22.
    Richardin P, Copy S, Chahine C, Saltron F, Bonnassies TS (1996) GC and GC/MS characterization of degradation amino acids in naturally and artificially aged leathers. J Am Leather Chem Assoc 91(1):2–17Google Scholar
  23. 23.
    Pastore P, Magno F, Volpin S, Biscontin G (1991) Chromatographic determination of oxalate ion in patinas covering ancient materials. Ann Chim (Rome) 81(5–6):233–241Google Scholar
  24. 24.
    Vieillescazes C, Coen S (1993) Charactérisation de quelques résines utilisées en Egypte ancienne. Stud Conserv 38:255–264CrossRefGoogle Scholar
  25. 25.
    Casoli A, Mirti P, Palla G (1995) Characterization of medieval proteinaceous painting media using gas chromatography and gas chromatography- mass spectrometry. Fresenius’ J Anal Chem 352(3–4):372–379CrossRefGoogle Scholar
  26. 26.
    Halpine SM (1992) Amino acid analysis of proteinaceous media from Cosimo Tura’s The Annunciation with Saint Francis and Saint Louis of Toulouse. Stud Conserv 37(1):22–38CrossRefGoogle Scholar
  27. 27.
    Bouchonnet S (2009) La spectrométrie de masse en couplage avec chromatographie en phase gazeuse. Tec and Doc Lavoisier, ParisGoogle Scholar
  28. 28.
    Cuoco G, Mathe C, Archier P, Vieillescazes C (2009) A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection. Ultrason sonochem 16:75–82CrossRefGoogle Scholar
  29. 29.
    Bleton J, Tchapla A (2009) SPME/GC-MS in the caracterisation of terpenic resins. In: Organic mass spectrometry in art and archeology. J Wiley 10:261–302Google Scholar
  30. 30.
    Colombini MP, Modugno F, Giannarelli S, Fuoco R, Matteini M (2000) GC-MS characterization of paint varnishes. Microchem J 67:385–396CrossRefGoogle Scholar
  31. 31.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2009) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Acc Chem Res 43(6):715–727CrossRefGoogle Scholar
  32. 32.
    Gröβl M, Harrison S, Kaml I, Kenndler E (2005) Characterisation of natural polysaccharides (plant gums) used as binding media for artistic and historic works by capillary zone electrophoresis. J Chromatogr 1077:80–89CrossRefGoogle Scholar
  33. 33.
    Kaml I, Vcelakova K, Kenndler E (2004) Characterisation and identification of proteinaceous binding media (animal glues) from their amino acid profile by capillary zone electrophoresis. J Sep Sci 27:161–166CrossRefGoogle Scholar
  34. 34.
    Harrison S, Kaml I, Prokoratova V, Mazanek M, Kenndler E (2005) Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bional Chem 382:1520–1526Google Scholar
  35. 35.
    Findeisen A, Kolivoska V, Kaml I, Baatz W, Kenndler E (2007) Analysis of diterpenoic compounds in natural resins applied as binders in museum objects by capillary electrophoresis. J Chromatogr 1157:454–461CrossRefGoogle Scholar
  36. 36.
    Surowiec I, Kaml I, Kenndler E (2004) Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect UV and conductivity detection. J Chromatogr 1024:245–254CrossRefGoogle Scholar
  37. 37.
    Harrison S, Kaml I, Rainer F, Kenndler E (2005) Identification of drying oils in mixtures of natural binding media used for artistic and historic works by capillary electrophoresis. J Sep Sci 28:1587–1594Google Scholar
  38. 38.
    Maguregui M, Alonso R, Barandiaran M, Jimenez R, García N (2007) Micellar electrokinetic chromatography method for the determination of several natural red dyestuff and lake pigments used in art work. J Chromatogr 1154:429–436CrossRefGoogle Scholar
  39. 39.
    Puchalska M, Orlinska M, Ackacha M (2003) Identification of anthraquinone coloring matters in natural red dyes by electrspray mass spectrometry coupled to capillary electrophoresis. J Mass Spectrom 38:1252–1258CrossRefGoogle Scholar
  40. 40.
    Kouznetsov DA, Ivanov A, Veletsky P (1994) Detection of alkylated cellulose derivatives in several archaeological linen textile samples by capillary electrophoresis/mass spectrometry. Anal Chem 66:4359–4365CrossRefGoogle Scholar
  41. 41.
    López-Montes A, Blanc R, Espejo T, Huertas-Pérez J, Navalón A, Vilchez JL (2007) Simultaneous identification of natural dyes in the collection of drawings and maps from the Royal Chancellery Archives in Granada (Spain) by CE. Electrophoresis 28:1243–1251CrossRefGoogle Scholar
  42. 42.
    López-Montes A, Blanc R, Espejo T, Navalón A, Vilchez JL (2009) Characterization of sepia ink in ancient graphic documents by capillary electrophoresis. Microchim J 93:121–126CrossRefGoogle Scholar
  43. 43.
    Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. Willey, New YorkGoogle Scholar
  44. 44.
    Dupont A-L, Egasse C, Morin A, Vasseur F (2007) Comprehensive characterisation of cellulose- and lignocellulose- degradation products in agent papers: Capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives. Carbohydr Polym 68:1–16CrossRefGoogle Scholar
  45. 45.
    Doménech-Carbó M (2008) Novel analytical methods for characterising binding media and protective coatings in artworks. Anal Chim Acta 621:109–139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Catherine Vieillescazes
    • 1
  • Isabel Sierra
    • 2
  • Sonia Morante-Zarcero
    • 2
  1. 1.Laboratory of Chemistry Applied to Art and ArchaeologyAvignonFrance
  2. 2.Inorganic and Analytical Chemistry DepartmentESCET, Rey Juan Carlos UniversityMóstolesSpain

Personalised recommendations