Skip to main content

The Distribution of Zeros of the Derivative of a Random Polynomial

  • Conference paper
  • First Online:
Advances in Combinatorics

Abstract

In this note we initiate the probabilistic study of the critical points of polynomials of large degree with a given distribution of roots. Namely, let f be a polynomial of degree n whose zeros are chosen IID from a probability measure μ on \(\mathbb{C}\). We conjecture that the zero set of f ′ always converges in distribution to μ as n. We prove this for measures with finite one-dimensional energy. When μ is uniform on the unit circle this condition fails. In this special case the zero set of f ′ converges in distribution to that of the IID Gaussian random power series, a well known determinantal point process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul Aziz. On the zeros of a polynomial and its derivative. Bull. Austral. Math. Soc., 31(2):245–255, 1985.

    Google Scholar 

  2. J. Bak and D. Newman. Complex Analysis. undergraduate Texts in Mathematics. Springer-Verlag, Berlin, 1982.

    Google Scholar 

  3. Hubert E. Bray. On the Zeros of a Polynomial and of Its Derivative. Amer. J. Math., 53(4):864–872, 1931.

    Google Scholar 

  4. A. Bharucha-Reid and M. Sambandham. Random Polynomials. Academic Press, Orlando, FL, 1986.

    MATH  Google Scholar 

  5. Branko Ćurgus and Vania Mascioni. A contraction of the Lucas polygon. Proc. Amer. Math. Soc., 132(10):2973–2981 (electronic), 2004.

    Google Scholar 

  6. N. G. de Bruijn. On the zeros of a polynomial and of its derivative. Nederl. Akad. Wetensch., Proc., 49:1037–1044 = Indagationes Math. 8, 635–642 (1946), 1946.

    Google Scholar 

  7. N. G. de Bruijn and T. A. Springer. On the zeros of a polynomial and of its derivative. II. Nederl. Akad. Wetensch., Proc., 50:264–270 = Indagationes Math. 9, 458–464 (1947), 1947.

    Google Scholar 

  8. Dimitar K. Dimitrov. A refinement of the Gauss-Lucas theorem. Proc. Amer. Math. Soc., 126(7):2065–2070, 1998.

    Google Scholar 

  9. Janusz Dronka. On the zeros of a polynomial and its derivative. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., (9):33–36, 1989.

    Google Scholar 

  10. R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, CA, third edition, 2004.

    Google Scholar 

  11. Kenneth Falconer. Fractal geometry. John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications.

    Google Scholar 

  12. A. W. Goodman, Q. I. Rahman, and J. S. Ratti. On the zeros of a polynomial and its derivative. Proc. Amer. Math. Soc., 21:273–274, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  13. Andreas Hofinger. The metrics of Prokhorov and Ky Fan for assessing uncertainty in inverse problems. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 215:107–125 (2007), 2006.

    Google Scholar 

  14. André Joyal. On the zeros of a polynomial and its derivative. J. Math. Anal. Appl., 26:315–317, 1969.

    Google Scholar 

  15. N.L. Komarova and I. Rivin. Harmonic mean, random polynomials and stochastic matrices. Advances in Applied Mathematics, 31(2):501–526, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Mahler. On the zeros of the derivative of a polynomial. Proc. Roy. Soc. Ser. A, 264:145–154, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. M. Malamud. Inverse spectral problem for normal matrices and the Gauss-Lucas theorem. Trans. Amer. Math. Soc., 357(10):4043–4064 (electronic), 2005.

    Google Scholar 

  18. M. Marden. Geometry of Polynomials, volume 3 of Mathematical Surveys and Monographs. AMS, 1949.

    Google Scholar 

  19. M. Marden. Conjectures on the critical points of a polynomial. Amer. Math. Monthly, 90(4):267–276, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  20. Piotr Pawlowski. On the zeros of a polynomial and its derivatives. Trans. Amer. Math. Soc., 350(11):4461–4472, 1998.

    Google Scholar 

  21. Y. Peres and B. Virag. Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math., 194:1–35, 2005.

    Google Scholar 

  22. Q. I. Rahman. On the zeros of a polynomial and its derivative. Pacific J. Math., 41:525–528, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bl. Sendov. Hausdorff geometry of polynomials. East J. Approx., 7(2):123–178, 2001.

    Google Scholar 

  24. Bl. Sendov. New conjectures in the Hausdorff geometry of polynomials. East J. Approx., 16(2):179–192, 2010.

    Google Scholar 

  25. È. A. Storozhenko. On a problem of Mahler on the zeros of a polynomial and its derivative. Mat. Sb., 187(5):111–120, 1996.

    Article  MathSciNet  Google Scholar 

  26. Q. M. Tariq. On the zeros of a polynomial and its derivative. II. J. Univ. Kuwait Sci., 13(2):151–156, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Pemantle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pemantle, R., Rivin, I. (2013). The Distribution of Zeros of the Derivative of a Random Polynomial. In: Kotsireas, I., Zima, E. (eds) Advances in Combinatorics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30979-3_14

Download citation

Publish with us

Policies and ethics