Advertisement

Grey-Based Particle Swarm Optimization Algorithm

  • Ming-Feng Yeh
  • Cheng Wen
  • Min-Shyang Leu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7331)

Abstract

In order to apply grey relational analysis to the evolutionary process, a modified grey relational analysis is introduced in this study. Then, with the help of such a grey relational analysis, this study also proposed a grey-based particle swarm optimization algorithm in which both inertia weight and acceleration coefficients are varying over the generations. In each generation, every particle has its own algorithm parameters and those parameters may differ for different particles. The proposed PSO algorithm is applied to solve the optimization problems of twelve test functions for illustration. Simulation results are compared with the other three variants of PSO to demonstrate the search performance of the proposed algorithm.

Keywords

Acceleration coefficients Grey relational analysis Inertia weight Particle swarm optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proc. 6th Intl. Symp. Micro Machine Human Sci., pp. 39–43. IEEE Press, New York (1995)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. 1991 IEEE Neural Netw., pp. 1942–1948. IEEE Press, New York (1995)Google Scholar
  3. 3.
    Zhan, Z.H., Zhan, J.Z., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man, Cybern., B. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  4. 4.
    AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)CrossRefGoogle Scholar
  5. 5.
    Lin, C.J., Hsieh, M.H.: Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72(4-6), 1121–1130 (2009)CrossRefGoogle Scholar
  6. 6.
    Wai, R.J., Lee, J.D., Chuang, K.L.: Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Ind. Electron. 58(2), 629–646 (2011)CrossRefGoogle Scholar
  7. 7.
    Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)zbMATHGoogle Scholar
  8. 8.
    Yeh, M.-F., Chang, C.-T., Leu, M.-S.: Financial distress prediction model via greyART network and grey model. In: Zeng, Z., Wang, J. (eds.) Advances in Neural Network Research and Applications. LNEE, vol. 67, pp. 91–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Yeh, M.F., Leu, M.S.: Grey adaptive growing CMAC network. Appl. Soft Comput. 11(8), 5400–5410 (2011)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE World Congr. Comput. Intell., pp. 69–73. IEEE Press, New York (1998)Google Scholar
  11. 11.
    Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ming-Feng Yeh
    • 1
  • Cheng Wen
    • 1
  • Min-Shyang Leu
    • 1
  1. 1.Department of Electrical EngineeringLunghwa University of Science and TechnologyTaoyuanTaiwan

Personalised recommendations