In Personalized Networked Spaces (PNets), people and devices are integrated with the environment and demand fluid interactions to enable connectivity to information, services, and people. PNet applications exhibit significant spatiotemporal demands in which connectivity to resources and information is personalized and focused on the here and now. We introduce Gander, a personalized search engine for the here and now. We examine how search expectations are affected when users and applications interact directly with the physical environment. We define a formal conceptual model of search in PNets that provides a clear definition of the framework and ultimately enables reasoning about relationships between search processing and the relevance of results. We assess our model by evaluating sophisticated Gander queries in a simulated PNet.


Data Item Query Processing Search String Smart Object Relevance Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlers, D., Boll, S.: Beyond position–spatial context for mobile information retrieval systems. In: Proc. of WPNC, pp. 129–134 (2009)Google Scholar
  2. 2.
    Assa, J., Cohen-Or, D., Milo, T.: Displaying data in multidimensional relevance space with 2d visualization maps. In: Proc. of Visualization, pp. 127–134 (1997)Google Scholar
  3. 3.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Networks 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bansal, M., Fernandez-Baca, D.: Computing distances between partial rnakings. Information Processing Letters 109(4), 238–241 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beard, K., Sharma, V.: Multidimensional ranking for data in digital spatial libraries. Int’l. J. on Digital Libraries, 153–160 (1997)Google Scholar
  6. 6.
    Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing 6(2), 161–180 (2010)CrossRefGoogle Scholar
  7. 7.
    Bolliger, P., Ostermaier, B.: Koubachi: A mobile phone widget to enable affective communication with indoor plants. In: Proc. of MIRW, pp. 63–66 (2007)Google Scholar
  8. 8.
    Chen, A.: Context-Aware Collaborative Filtering System: Predicting the User’s Preference in the Ubiquitous Computing Environment. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 244–253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    de Almeida, V., Guting, R., Behr, T.: Querying moving objects in secondo. In: Proc. of MDM, p. 47 (May 2006)Google Scholar
  10. 10.
    Djafri, N., Fernandes, A.A., Paton, N.W., Griffiths, T.: Spatio-temporal evolution: querying patterns of change in databases. In: Proc. of ACMGIS, pp. 35–41 (2002)Google Scholar
  11. 11.
    Egenhofer, M., Franzosa, R.: Point-set topological relations. Int’l. J. of Geographical Info. Sys. 5(2), 161–174 (1991)Google Scholar
  12. 12.
    Elahi, B.M., Römer, K., Ostermaier, B., Fahrmair, M., Kellerer, W.: Sensor ranking: A primitive for efficient content-based sensor search. In: Proc. of IPSN, pp. 217–228 (2009)Google Scholar
  13. 13.
    Erwig, M., Schneider, M.: Developments in spatio-temporal query languages. In: Proc. of DEXA, pp. 441–449 (1999)Google Scholar
  14. 14.
    Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE Trans. on Knowledge and Data Eng. 14, 881–901 (2002)CrossRefGoogle Scholar
  15. 15.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N., Nardelli, E., Schneider, M., Viqueira, J.R.R.: Chapter 4: Spatio-temporal Models and Languages: An Approach Based on Data Types. In: Sellis, T.K., Koubarakis, M., Frank, A., Grumbach, S., Güting, R.H., Jensen, C., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Theodoulidis, B., Tryfona, N., Schek, H.-J., Scholl, M.O. (eds.) Spatio-Temporal Databases. LNCS, vol. 2520, pp. 117–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. on Info. Sys. 20, 422–446 (2002)CrossRefGoogle Scholar
  17. 17.
    Jones, Q., Grandhi, S., Karam, S., Whittaker, S., Zhou, C., Terveen, L.: Geographic place and community information preferences. CSCW 17(2-3), 137–167 (2008)Google Scholar
  18. 18.
    Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building blocks for the internet of things. IEEE Internet Computing 14(1), 44–51 (2010)CrossRefGoogle Scholar
  19. 19.
    Kreveld, M., Reinbacher, I., Arampatzis, A., Zwol, R.: Multi-dimensional scattered ranking methods for geographic information retrieval. GeoInform 9, 61–84 (2005)CrossRefGoogle Scholar
  20. 20.
    Lamming, M., Newman, W.: Activity-based information retrieval: Technology in support of personal memory. In: Proc. of IFIP World Computer Congress on Personal Computers and Intelligent Systems – Information Processing (1992)Google Scholar
  21. 21.
    Disney World Lines App (Touring Plans),
  22. 22.
    Manning, C.D., Raghavan, P., Schutze, H.: Intro. to Information Retrieval (2009)Google Scholar
  23. 23.
    Mountain, D., MacFarlane, A.: Geographic information retrieval in a mobile environment: evaluating the needs of mobile individuals. J. of Info. Science 33, 515–530 (2007)CrossRefGoogle Scholar
  24. 24.
    Ostermaier, B., Römer, K., Mattern, F., Fahrmair, M., Kellerer, W.: A real-time search engine for the web of things. In: Proc. of IOT, pp. 1–8 (2010)Google Scholar
  25. 25.
    Rajamani, V., Julien, C., Payton, J., Roman, G.-C.: Inquiry and Introspection for Non-deterministic Queries in Mobile Networks. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 401–416. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Reichenbacher, T.: Geographic relevance in mobile services. In: Proc. of LocWeb (2009)Google Scholar
  27. 27.
    Si, H., Kawahara, Y., Kurasawa, H., Morikawa, H., Aoyama, T.: A context-aware collaborative filtering algorithm for real world oriented content delivery service. In: Proc. of Metapolis and Urban Life Workshop (2005)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Jonas Michel
    • 1
  • Christine Julien
    • 1
  • Jamie Payton
    • 2
  • Gruia-Catalin Roman
    • 3
  1. 1.The University of TexasAustinUSA
  2. 2.The University of North CarolinaCharlotteUSA
  3. 3.The University of New MexicoAlbuquerqueUSA

Personalised recommendations