SenseBox – A Generic Sensor Platform for the Web of Things

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 104)


Applications of the Web of Things reach from smart shoes posting your running performance online, over the localization of goods in the production chain, to computing the insurance cost of cars based on the actually driven kilometers. Thereby, Web of Things applications follow the REST paradigm, i.e. access to things and their properties is offered via REST APIs. This allows an easy meshing of web-enabled things into existing Web applications. This work introduces the SenseBox, a small computing device equipped (1) with different sensors to perceive its environment and (2) with a Web server and an according REST API which makes it available as a first class citizen on the Web. In an example use case of this generic sensor platform, the SenseBox is deployed next to a road and its in-built ultra sonic sensor is used to detect the number of bypassing cars and eventually determine the traffic density.


Web of Things Geosensors Sensor Integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific American 291(4), 76–81 (2004)CrossRefGoogle Scholar
  2. 2.
    Guinard, D., Trifa, V.: Towards the Web of Things: Web Mashups for Embedded Devices. In: International World Wide Web Conference. ACM, Madrid (2009)Google Scholar
  3. 3.
    Weiser, M.: The Computer for the 21st Century. Scientific American 265(9), 94–104 (1991)CrossRefGoogle Scholar
  4. 4.
    Hui, J.W., Culler, D.E.: IP is Dead, Long Live IP for Wireless Sensor Networks. In: SenSys 2008: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 15–28. ACM, New York (2008)Google Scholar
  5. 5.
    EPCglobal: EPCglobal Object Name Service (ONS) 1.0.1. EPCglobal Inc. (2008)Google Scholar
  6. 6.
    Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM Transactions on Internet Technology 2(2), 115–150 (2002)CrossRefGoogle Scholar
  7. 7.
    Pinto, J., Martins, R., Sousa, J.: Towards a REST-style Architecture for Networked Vehicles and Sensors. In: 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 745–750. IEEE, Mannheim (2010)Google Scholar
  8. 8.
    Ostermaier, B., Schlup, F., Romer, K.: WebPlug: A Framework for the Web of Things. In: 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 690–695. IEEE, Mannheim (2010)Google Scholar
  9. 9.
    Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., Lemmens, R.: New Generation Sensor Web Enablement. Sensors 11(3), 2652–2699 (2011)CrossRefGoogle Scholar
  10. 10.
    Janowicz, K., Bröring, A., Stasch, C., Everding, T.: Towards Meaningful URIs for Linked Sensor Data. In: Devaraju, A., Llaves, A., Maue, P., Kessler, C. (eds.) Towards Digital Earth: Search, Discover and Share Geospatial Data, Workshop at Future Internet Symposium, vol. 640. CEUR-WS, Berlin (2010)Google Scholar
  11. 11.
    Cox, S.: OGC Implementation Specification 07-022r1: Observations and Measurements - Part 1 - Observation schema. Open Geospatial Consortium, Wayland, MA, USA (2007)Google Scholar
  12. 12.
    Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc. (2007)Google Scholar
  13. 13.
    ISO: ISO 8601:2004 - Data elements and interchange formats - Information interchange - Representation of dates and times. International Organization for Standardization (ISO), Geneva, Switzerland (2004)Google Scholar
  14. 14.
    Delin, K.: The Sensor Web: A Macro-Instrument for Coordinated Sensing. Sensors 2, 270–285 (2001)CrossRefGoogle Scholar
  15. 15.
    Resch, B., Mittlboeck, M., Lippautz, M.: Pervasive Monitoring - An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures. Sensors 10(12), 11440–11467 (2010)CrossRefGoogle Scholar
  16. 16.
    Xia, F., Tian, Y., Li, Y., Sung, Y.: Wireless sensor/actuator network design for mobile control applications. Sensors 7(10), 2157–2173 (2007)CrossRefGoogle Scholar
  17. 17.
    Heidemann, J., Govindan, R.: Embedded sensor networks. In: Handbook of Networked and Embedded Control Systems, pp. 721–738 (2005)Google Scholar
  18. 18.
    Bröring, A., Below, S., Foerster, T.: Declarative Sensor Interface Descriptors for the Sensor Web. In: Brovelli, M., Dragicevic, S., Li, S., Veenendaal, B. (eds.) WebMGS 2010: 1st International Workshop on Pervasive Web Mapping, Geoprocessing and Services, vol. 38. ISPRS, Como (2010)Google Scholar
  19. 19.
    Bröring, A., Maué, P., Janowicz, K., Nüst, D., Malewski, C.: Semantically-enabled Sensor Plug & Play for the Sensor Web. Sensors 11(8), 7568–7605 (2011)CrossRefGoogle Scholar
  20. 20.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story so far. Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  21. 21.
    Janowicz, K., Bröring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.: A RESTful Proxy and Data Model for Linked Sensor Data. International Journal of Digital Earth (2011) (in press)Google Scholar
  22. 22.
    Bröring, A., Stasch, C., Echterhoff, J.: OGC Interface Standard 10-037: Sensor Observation Service (SOS) 2.0 Interface Standard. Open Geospatial Consortium, Wayland, MA, USA (2010) (candidate standard)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  1. 1.Institute for GeoinformaticsUniversity of MünsterMünsterGermany
  2. 2.ITC FacultyUniversity of TwenteEnschedeThe Netherlands
  3. 3.52°North Initiative for Geospatial Open Source Software GmbHMünsterGermany

Personalised recommendations