Skip to main content

Whole-Plant Physiology: Synergistic Emergence Rather Than Modularity

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

Abstract

Work on “whole-plant physiology” which culminated in the 1970s and 1980s is reviewed. With its major issues, such as root–shoot interaction in nitrogen and sulfur assimilation, phloem–xylem transfers and circulation of matter in the whole plant, and hydraulic signaling of water relations, this older work shows integration in plants as unitary organisms. It has essential messages for progress with a holistic view on “systems biology”. The huge amounts of data of molecular cell biology of plants (“omics”) are often considered as modules. The discussion of signaling, such as electric, hydraulic, and chemical signaling, helps to advance to an understanding of integration and of emergence in contrast to modularity. Source–sink relations and root–shoot interactions in the performance of the whole plant in its environment are elaborated as examples for emergence from the coordination of parts. Timely systems biology must develop a whole-plant view by following systemic interactions comprehending all relevant spatio-temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, Taylor and Francis Books, New York

    Google Scholar 

  • Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, De Michelis MI, Epstein E, Galston AW, Goldsmith MHM, Hawes C, Hell R, Hetherington A, Hofte H, Juergens G, Leaver CJ, Moroni A, Murphy A, Oparka K, Perata P, Quader H, Rausch T, Ritzenthaler C, Rivetta A, Robinson DG, Sanders D, Scheres B, Schumacher K, Sentenac H, Slayman CL, Soave C, Somerville C, Taiz L, Thiel G, Wagner R (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136

    PubMed  CAS  Google Scholar 

  • Anderson JM, Thomson WW (1989) Dynamic molecular organization of the plant thylakoid membrane. Photosynthesis. Alan R. Liss, New York, pp 161–182

    Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Nat Acad Sci USA 102:4383–4386

    PubMed  CAS  Google Scholar 

  • Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Nat Acad Sci USA 101:6039–6044

    PubMed  CAS  Google Scholar 

  • Baker NR, Rosenquist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centres: the unique ‘brain like’ status of the root apex transition zone. Biol Brat 59:1–13

    Google Scholar 

  • Baluška F, Ninkovic V (2010) Plant communication from an ecological perspective. Springer, Berlin

    Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Google Scholar 

  • Bano A, Dörffling K, Bettin D, Hahn H (1993) Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Aust J Plant Physiol 20:109–115

    CAS  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    PubMed  CAS  Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472

    Google Scholar 

  • van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seiferotová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • BenZioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plantarum 24:288–290

    CAS  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Google Scholar 

  • Bitbol M (2011) La nature s’organise comme les poupées russes. La Recherche Hors-Série 43:22–27

    Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) Nature 433:39–44

    PubMed  CAS  Google Scholar 

  • Brauner L, Bünning E (1930) Geoelektrischer Effekt und Elektrotropismus. Ber Dtsch Bot Ges 48:470–476

    Google Scholar 

  • Brenner E, Stahlberg R, Mancuso S, Vivanco J, Baluška F, van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Plant Sci 11:413–419

    CAS  Google Scholar 

  • Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 215–227

    Google Scholar 

  • Bünnemann EK, Oberson A, Frossard E (eds) (2011) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26, Soil biology. Springer, Heidelberg

    Google Scholar 

  • Bulychev AA, Kamzolkina NA (2006a) Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells. Bioelectrochemistry 69:209–215

    PubMed  CAS  Google Scholar 

  • Bulychev AA, Kamzolkina NA (2006b) Effect of action potential on photosynthesis and spatially distributed H+ fluxes in cells and chloroplasts of Chara corallina. Russ J Plant Physiol 53:1–9

    CAS  Google Scholar 

  • Bulychev AA, Turovetsky VB (1983) Light-triggered changes of membrane potential in cells of Anthoceros punctatus and their relation to activation of chloroplast ATPase. J Exp Bot 34:1181–1188

    CAS  Google Scholar 

  • Canny MJP (1975) Mass transfer. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 139–153

    Google Scholar 

  • Cermak J, Matyssek R, Kucera J (1993) Rapid response of large, drought-stressed beech trees to irrigation. Tree Physiol 12:281–290

    PubMed  Google Scholar 

  • Chaerle L, Hagenbeek D, DeBruyne E, Valcke R, van der Staeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    PubMed  CAS  Google Scholar 

  • Cheeseman JM, Wickens LK (1986) Control of Na+ and K+ transport in Spergularia marina. III. Relationship between ion uptake and growth at moderate salinity. Physiol Plantarum 67:15–22

    CAS  Google Scholar 

  • Chow WS, Qian L, Goodchild DJ, Anderson JM (1988) Photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don. to growth irradiance: structure, function and composition of chloroplasts. Aust J Plant Physiol 15:107–122

    CAS  Google Scholar 

  • Clarkson DT, Smith FW, Vanden Berg PJ (1983) Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum, cv. Sirato. J Exp Bot 34:1463–1483

    CAS  Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200

    PubMed  CAS  Google Scholar 

  • Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals. A possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40:753–762

    CAS  Google Scholar 

  • Coster HGL, Zimmermann U (1975) Dielectric breakdown in the membranes of Valonia utricularis. The role of energy dissipation. Biochim Biophys Acta 382:410–418

    PubMed  CAS  Google Scholar 

  • Cram WJ, Pitman MG (1972) The action of abscisic acid on ion uptake and water flow in plant roots. Aust J Biol Sci 25:1125–1132

    CAS  Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Darwin F (1909) Darwin’s work on the movements of plants. In: Steward AC (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 385–400

    Google Scholar 

  • Davies E (2004) New functions for electrical signals in Plants. New Phytol 161:607–610

    Google Scholar 

  • Davies WJ, Mansfield TA, Hetherington AM (1990) Sensing of soil water status and the regulation of plant growth and development. Plant Cell Environ 13:709–719

    Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314

    PubMed  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • Duarte HM, Lüttge U (2007) Correlation between photorespiration, CO2-assimilation and spatiotemporal dynamics of photosynthesis in leaves of the C3-photosynthesis/crassulacean acid metabolism-intermediate species Clusia minor L. (Clusiaceae). Trees 21:531–540

    CAS  Google Scholar 

  • Duarte HM, Jakovljevic I, Kaiser F, Lüttge U (2005) Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier. Planta 220:809–816

    PubMed  CAS  Google Scholar 

  • Dziubińska H, Trębacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant 75:417–423

    Google Scholar 

  • Dziubińska H, Trębacz K, Zawadski T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172

    Google Scholar 

  • Eschrich W, Steiner M (1967) Autoradiographische Untersuchungen zum Stofftransport bei Polytrichum commune. Planta 74:330–349

    CAS  Google Scholar 

  • Evans JR (1988) Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Aust J Plant Physiol 15:93–106

    CAS  Google Scholar 

  • Fetene M, Lee HSJ, Lüttge U (1990) Photosynthetic acclimation in a terrestrial CAM bromeliad, Bromelia humilis Jacq. New Phytol 114:399–406

    CAS  Google Scholar 

  • Field CB (1988) On the role of photosynthetic responses in constraining the habitat distribution of rainforest plants. Aust J Plant Physiol 15:343–358

    Google Scholar 

  • Filek M, Koscielniak J (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor). Plant Sci 123:39–46

    CAS  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    PubMed  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport—old questions and new concepts? Plant Mol Biol 49:273–284

    PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    PubMed  CAS  Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    CAS  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    PubMed  CAS  Google Scholar 

  • Frost WB, Blevins DG, Barnett NM (1978) Cation pretreatment effects on nitrate uptake, xylem exudates, and malate levels in wheat seedlings. Plant Physiol 61:323–326

    PubMed  CAS  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Geßler A, Weber P, Schneider S, Rennenberg H (2003) Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst.). J Exp Bot 54:1389–1397

    PubMed  Google Scholar 

  • Gil PM, Gurovich L, Schaffer B, Alcayaga J, Rey S, Iturriaga R (2008) Root to leaf electrical signaling in avocado in response to light and soil water content. J Plant Phys 165:1070–1078

    CAS  Google Scholar 

  • Gollan T, Turner NC, Schulze E-D (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophyllous woody species Nerium oleander. Oecologia 65:356–362

    Google Scholar 

  • Gorska A, Zwieniecka A, Holbrook NM, Zwieniecki MA (2008a) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998

    PubMed  CAS  Google Scholar 

  • Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008b) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148:1159–1167

    PubMed  CAS  Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84

    PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    PubMed  CAS  Google Scholar 

  • Grams TEE, Lüttge U (2010) Space as a resource. Prog Bot 72:349–370

    Google Scholar 

  • Grams TEE, Werner H, Kuptz D, Ritter W, Fleischmann F, Andersen CP, Matyssek R (2011) A free-air system for long-term stable isotope labeling of adult forest trees. Trees 25:187–198

    CAS  Google Scholar 

  • Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    PubMed  CAS  Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci USA 101:3863–3867

    PubMed  CAS  Google Scholar 

  • Gurovich LA, Hermosilla P (2009) Electric signalling in fruit trees in response to water applications and light-darkness conditions. J Plant Physiol 166:290–300

    PubMed  CAS  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53:27–32

    PubMed  CAS  Google Scholar 

  • Haukioja E (1991) The influence of grazing on the evolution, morphology and physiology of plants as modular organisms. Phil Trans R Soc Lond Ser B Biol Sci 333:241–247

    Google Scholar 

  • Heil M (2010) Within-plant signalling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112

    Google Scholar 

  • Heil M, Ton J (2008) Long distance signalling and plant defence. Trend Plant Sci 13:264–272

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076

    CAS  Google Scholar 

  • Hoge FE, Swift RN, Yungel JK (1983) Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants. Appl Opt 22:2991–3000

    PubMed  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    PubMed  CAS  Google Scholar 

  • Hope AB, Lüttge U, Ball E (1972) Photosynthesis and apparent proton fluxes in Elodea canadensis. Z Pflanzenphysiol 68:73–81

    CAS  Google Scholar 

  • Hummel GM, Schurr U, Baldwin IT, Walter A (2009) Herbivore-induced jasmonic acid bursts in leaves of Nicotiana attenuata mediate short-term reductions in root growth. Plant Cell Environ 32:134–143

    PubMed  CAS  Google Scholar 

  • Hütt M-Th (2012) A network view on patterns of gene expression and metabolic activity. Nova Acta Leopoldina NF

    Google Scholar 

  • Hütt M-Th, Lüttge U (2002) Nonlinear dynamics as a tool for data analysis and modeling in plant physiology. Plant Biol 4:281–297

    Google Scholar 

  • Jeschke WD, Atkins CA, Pate JS (1985) Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J Plant Physiol 117:319–330

    CAS  Google Scholar 

  • Jeschke WD, Holobradá M, Hartung W (1997a) Growth of Zea mays L. plants with their seminal roots only: effects on plant development, xylem transport, mineral nutrition and the flow and distribution of abscisic acid (ABA) as a possible shoot to root signal. J Exp Bot 48:1229–1239

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991a) Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J Exp Bot 42:1105–1116

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991b) Modelling of the uptake, flow and utilization of C, N and H2O within whole plants of Ricinus communis L. based on empirical data. J Plant Physiol 137:488–498

    CAS  Google Scholar 

  • Jeschke WD, Pate JS, Atkins CA (1987) Partitioning of K+, Na+, Mg++, and Ca++ through xylem and phloem to component organs of white lupin under mild salinity. J Plant Physiol 128:77–93

    CAS  Google Scholar 

  • Jeschke WD, Peuke AD, Pate JS, Hartung W (1997b) Transport, synthesis and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J Exp Bot 48:1737–1747

    CAS  Google Scholar 

  • Jeschke WD, Wolf O (1988) Effect of NaCl salinity on growth, development, ion distribution, and ion translocation in castor bean (Ricinus communis L.). J Plant Physiol 132:45–53

    CAS  Google Scholar 

  • Kaiser H, Grams TEE (2006) Rapid hydropassive opening and subsequent stomatal closure follow heat-induced electrical signals in Mimosa pudica L. J Exp Bot 57:2087–2092

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    PubMed  CAS  Google Scholar 

  • Kirkby EA, Knight AH (1977) Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation–anion balance in whole tomato plants. Plant Physiol 60:349–353

    PubMed  CAS  Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitations and high light. Plant Cell Environ 26:857–865

    PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    PubMed  CAS  Google Scholar 

  • Körner C (2012) Growth controls photosynthesis—mostly. Nova Acta Leopoldina NF

    Google Scholar 

  • van Koten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    CAS  Google Scholar 

  • de Kroon H, Huber H, Stuefer JF, van Groenendal JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82

    PubMed  Google Scholar 

  • Larsson C-M, Larsson M, Purves JV, Clarkson DT (1991) Translocation and cycling through roots of recently absorbed nitrogen and sulphur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol Plantarum 82:345–352

    CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    PubMed  CAS  Google Scholar 

  • Leigh RA, WynJones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist 97:1–13

    CAS  Google Scholar 

  • Longstreth DJ, Nobel PS (1980) Nutrient influences on leaf photosynthesis. Effects of nitrogen, phosphorus and potassium for Gossypium hirsutum L. Plant Physiol 65:541–543

    PubMed  CAS  Google Scholar 

  • Lüttge U (1961) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta 56:189–212

    Google Scholar 

  • Lüttge U (1963) Die Bedeutung des chemischen Reizes bei der Resorption von 14C-Glutaminsäure, 35SO – –4 und 45Ca++ durch Dionaea muscipula. Naturwissenschaften 50:22

    Google Scholar 

  • Lüttge U (1965) Untersuchungen zur Physiologie der Carnivoren-Drüsen. II. Mitteilung. Über die Resorption verschiedener Substanzen. Planta 66:331–344

    Google Scholar 

  • Lüttge U (1974) Co-operation of organs in intact higher plants: a review. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin, pp 353–362

    Google Scholar 

  • Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lüttge U (2009) Crassulacean acid metabolism a natural tool to study photosynthetic heterogeneity in leaves. Nova Acta Leopoldina NF 96/357:65–72

    Google Scholar 

  • Lüttge U, Clarkson DT (1989) Mineral nutrition: potassium. Prog Bot 50:51–73

    Google Scholar 

  • Lüttge U, Higinbotham N (1979) Transport in plants. Springer, New York

    Google Scholar 

  • Lüttge U, Hütt M-Th (2009) Talking patterns: communication of organisms at different levels of organization—an alternative view on systems biology. Nova Acta Leopoldina NF 96/357:161–174

    Google Scholar 

  • Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen. Wiley-VCH, Weinheim

    Google Scholar 

  • Maddess T, Rascher U, Siebke K, Lüttge U, Osmond CB (2002) Definition and evaluation of the spatio-temporal variations in chlorophyll fluorescence during the phases of CAM and during endogenous rhythms in continuous light, in thick leaves of Kalanchoë daigremontiana. Plant Biol 4:446–455

    CAS  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47,1255–1263.

    PubMed  CAS  Google Scholar 

  • Malingreau J-P, Tucker CJ (1987) La végétation vue de l’espace. La Recherche 18:180–189

    Google Scholar 

  • Martínez-Peñalver A, Reigosa MJ, Sánchez-Moreiras AM (2011) Imaging chlorophyll a fluorescence reveals specific spatial distribution under different stress conditions. Flora 201:836–844

    Google Scholar 

  • Masle J, Farquhar GD, Wong SC (1992) Transpiration ratio and plant mineral content are related among genotypes of a range of species. Aust J Plant Physiol 19:709–721

    CAS  Google Scholar 

  • Matyssek R, Lüttge U (2012) Gaia. The planet holobiont. Nova Acta Leopoldina NF

    Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580

    PubMed  CAS  Google Scholar 

  • Matyssek R, Gayler S, zu Castell W, Oßwald W, Ernst D, Pretzsch H, Schnyder H, Munch J-C (2012) Predictability of plant resource allocation—new theory needed? In: Matyssek R, Schnyder H, Ernst D, Munch J-C, Oßwald W, Pretzsch H (eds) Growth and defence in plants: resource allocation at multiple scales, vol 74, Ecological studies. Springer, Heidelberg, under revision

    Google Scholar 

  • Matyssek R, Maruyama S, Boyer JS (1991) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ 14:917–923

    Google Scholar 

  • Maxwell C, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    PubMed  CAS  Google Scholar 

  • Meyer S, Saccardy-Adji K, Rizza F, Genty B (2001) Inhibition of photosynthesis by Colletotrichum lindemuthanium in bean leaves determined by chlorophyll fluorescence imaging. Plant Cell Environ 24:947–955

    CAS  Google Scholar 

  • Nielsen JS, Joner EJ, Declerck S, Olsson S, Jacobsen I (2002) Phospho-imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas. New Phytol 154:809–819

    CAS  Google Scholar 

  • Ninkovic V (2010) Volatile interaction between undamaged plants: A short cut to coexistence. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 75–86

    Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741

    PubMed  Google Scholar 

  • Osmond CB, Daley PF, Badger MR, Lüttge U (1998) Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. infected with Abutilon mosaic virus, observed with a field-portable imaging system. Bot Acta 111:390–397

    CAS  Google Scholar 

  • Osmond CB, Kramer D, Lüttge U (1999) Reversible water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses. Plant Biol 1:618–624

    Google Scholar 

  • Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168:103–108

    PubMed  CAS  Google Scholar 

  • Pallaghy CK, Lüttge U (1970) Light-induced H+-ion fluxes and bioelectric phenomena in mesophyll cells of Atriplex spongiosa. Z Pflanzenphysiol 62:417–425

    CAS  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177

    PubMed  CAS  Google Scholar 

  • Pate JS, Sharkey PJ, Lewis OAM (1975) Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122:11–26

    CAS  Google Scholar 

  • Peuke AD, Glaab J, Kaiser WM, Jeschke WD (1996) The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J Exp Bot 47:377–385

    CAS  Google Scholar 

  • Peuke AD, Jeschke WD, Hartung W (1994) The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. III. Long-distance transport of abscisic acid depending on nitrogen nutrition and salt stress. J Exp Bot 45:741–747

    CAS  Google Scholar 

  • Pieruschka R, Rascher U, Klimov D, Kolber ZS, Berry JA (2009) Optical remote sensing and laser induced fluorescence transients (LIFT) to quantify the spatio-temporal functionality of plant canopies. Nova Acta Leopoldina 96/357:49–62

    Google Scholar 

  • Pitman MG (1975) Whole plants. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North Holland Publishing, Amsterdam, pp 267–308

    Google Scholar 

  • Rao T, Yano K, Iijima M, Yamauchi A, Tatsumi J (2002) Regulation of rhizosphere acidification by photosynthetic activity in cowpea seedlings. Ann Bot 89:213–220

    PubMed  CAS  Google Scholar 

  • Rascher U, Lüttge U (2002) High-resolution chlorophyll fluorescence imaging serves as a non-invasive indicator to monitor the spatio-temporal variations of metabolism during the day-night cycle and during the endogenous rhythm in continuous light in the CAM-plant Kalanchoë daigremontiana. Plant Biol 4:671–681

    CAS  Google Scholar 

  • Rascher U, Hütt M-Th, Siebke K, Osmond CB, Beck F, Lüttge U (2001) Spatiotemporal variation of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. Proc Natl Acad Sci USA 98:11801–11805

    PubMed  CAS  Google Scholar 

  • Raven J (1975) Transport of indoleacetic-acid in plant cells in relation to pH and electrical potential gradients and its significance for polar IAA transport. New Phytol 74:163–172

    CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Uhl C (1994) Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97:62–72

    Google Scholar 

  • Rennenberg H, Schmitz K, Bergmann L (1979) Long-distance transport of sulfur in Nicotiana tabacum. Planta 147:57–62

    CAS  Google Scholar 

  • Ritter W, Andersen CP, Matyssek R, Grams TEE (2011) Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic O3 exposure. Biogeosciences 8:3127–3138

    CAS  Google Scholar 

  • Rubery P, Sheldrake SH (1974) Carrier-mediated auxin transport. Planta 118:101–121

    CAS  Google Scholar 

  • Rubio G, Sorgonà A, Lynch JP (2004) Spatial mapping of phosphorus influx in bean root systems using digital autoradiography. J Exp Bot 55:2269–2280

    PubMed  CAS  Google Scholar 

  • Running SW (1990) Estimating terrestrial primary productivity by combining remote sensing and ecosystem simulation. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning, vol 79, Ecological studies. Springer, Berlin, pp 65–86

    Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen1-ol. J Chem Ecol 21:2217–2222

    Google Scholar 

  • Sandermann H, Matyssek R (2004) Scaling up from molecular to ecological processes. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170, Ecological studies. Springer, Heidelberg, pp 207–226

    Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    PubMed  CAS  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180

    CAS  Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173

    CAS  Google Scholar 

  • Schobert C, Komor E (1990) Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta 181:85–90

    CAS  Google Scholar 

  • Schurr U, Osmond B, Lüttge U, Rascher U, von Caemmerer S, Walter A (eds) (2009) Imaging and integrating heterogeneity of plant functions: functional biodiversity from cells to the biosphere. Nova Acta Leopoldina, Deutsche Akad Naturf Leopoldina, Halle 96/357: 1–192

    Google Scholar 

  • Schurr U, Schulze E-D (1996) Effects of drought on nutrient and ABA transport in Ricinus communis. Plant Cell Environ 19:665–674

    CAS  Google Scholar 

  • Shabala S, Pang J, Zhou M, Shabala L, Cuin T, Nick P, Wegner LH (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207

    PubMed  CAS  Google Scholar 

  • da Silva MC, Shelp BJ (1990) Xylem-to-phloem transfer of organic nitrogen in young soybean plants. Plant Physiol 92:797–801

    PubMed  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Biol 14:118–128

    PubMed  CAS  Google Scholar 

  • Stancović B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088

    Google Scholar 

  • Stancović B, Witters DL, Zawadzki T, Davies E (1998) Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics. Physiol Plantarum 103:51–58

    Google Scholar 

  • Stenz H-G, Weisenseel MH (1991) DC-electric field affects the growth direction and statocyte polarity of root tips (Lepidium sativum). J Plant Physiol 138:335–344

    Google Scholar 

  • Stenz H-G, Weisenseel MH (1993) Electrotropism of maize (Zea mays L.) roots. Facts and artifacts. Plant Physiol 101:1107–1111

    PubMed  Google Scholar 

  • Sutcliffe JF (1976a) Regulation in the whole plant, vol 2B, Encyclopedia of plant physiology. Springer, Berlin, pp 394–417

    Google Scholar 

  • Sutcliffe JF (1976b) Regulation of ion transport in the whole plant. Perspectives in experimental biology. In: Sunderland N (ed) Botany, vol II. Pergamon Press, Oxford, p 542

    Google Scholar 

  • Tang A-C, Boyer JS (2003) Root pressurization affects growth-induced water potentials and growth in dehydrated maize plants. J Exp Bot 54:2479–2488

    PubMed  CAS  Google Scholar 

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    CAS  Google Scholar 

  • Tardieu F, Zhang J, Gowing DJG (1993) Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ 16:413–420

    CAS  Google Scholar 

  • Thornley JHM (1972) A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36:431–441

    Google Scholar 

  • Tomkins P, Bird C (1973) The secret life of plants. Avon, New York

    Google Scholar 

  • Trewavas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    PubMed  CAS  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Plant Sci 10:414–419

    Google Scholar 

  • Turner NC, Schulze E-D, Gollan T (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus. Oecologia 65:348–355

    Google Scholar 

  • Vance CP, Chiou T-J (2011) Focus issue on phosphorus plant physiology. Plant Physiol 156:987–1086, editorial

    PubMed  CAS  Google Scholar 

  • Vanselow KH, Dau H, Hansen UP (1988) Indication of transthylakoid proton-fluxes in Aegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering. Planta 176:351–361

    CAS  Google Scholar 

  • Vanselow KH, Kolbowski Y, Hansen UP (1989) Further evidence for the relationship between light-induced changes of plasmalemma transport and transthylakoid proton uptake. J Exp Bot 40:239–245

    CAS  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156

    CAS  Google Scholar 

  • Volkov A, Foster JC, Markin VS (2010) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33:816–827

    PubMed  Google Scholar 

  • Von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209

    CAS  Google Scholar 

  • Walsh KB, Canny MJ, Layzell DB (1989) Vascular transport and soybean nodule function. II. A role for phloem supply in product export. Plant Cell Environ 12:713–723

    CAS  Google Scholar 

  • Wang Y, Holroyd G, Hetherington AM, Ng CK-Y (2004) Seeing ‘cool’ and ‘hot’—infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. J Exp Bot 55:1187–1193

    PubMed  CAS  Google Scholar 

  • Warren CR, Adams MA, Chen ZL (2000) Is photosynthesis related to concentration of nitrogen and Rubisco in leaves of Australian native plants? Aust J Plant Physiol 27:407–416

    CAS  Google Scholar 

  • Wartinger A, Heilmeier H, Hartung W, Schulze E-D (1990) Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) D.A. Webb] under desert conditions. New Phytol 116:581–587

    CAS  Google Scholar 

  • Went FW (1926) On growth-accelerating substances in the coleoptiles of Avena sativa. Proc Kon Ned Akad Wetensch 30:10–19

    Google Scholar 

  • Went FW (1939) Growth hormones in the higher plants. Annu Rev Biochem 8:521–540

    CAS  Google Scholar 

  • Went FW (1974) Reflections and speculations. Annu Rev Plant Physiol 25:1–26

    CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

  • Werner D (1992) Symbiosis of plants and microbes. Chapman and Hall, London

    Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast. Plant Physiol 113:559–573

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves: a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709

    PubMed  CAS  Google Scholar 

  • Wolf O, Jeschke WD (1987) Modeling of sodium and potassium flows via phloem and xylem in the shoot of salt-stressed barley. J Plant Physiol 128:371–386

    CAS  Google Scholar 

  • Wolf O, Jeschke WD, Hartung W (1990) Long distance transport of abscisic acid in NaCl-treated intact plants of Lupinus albus. J Exp Bot 41:593–600

    CAS  Google Scholar 

  • Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13:277–285

    CAS  Google Scholar 

  • Ziegler H, Lüttge U (1959) Über die Resorption von C14-Glutaminsäure durch sezernierende Nektarien. Naturw 46:176–177

    CAS  Google Scholar 

  • Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547

    PubMed  CAS  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I very much thank two anonymous reviewers. Their assessments of the essay are now reflected in the wording of the Introduction and Conclusions. Circumstances do not allow quoting them, and this can only be done anonymously here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lüttge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U. (2013). Whole-Plant Physiology: Synergistic Emergence Rather Than Modularity. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_6

Download citation

Publish with us

Policies and ethics