Riemannian and Hermitian Metrics

  • Michel Marie Deza
  • Elena Deza

Abstract

Riemannian Geometry is a multidimensional generalization of the intrinsic geometry of two-dimensional surfaces in the Euclidean space \(\mathbb{E}^{3}\). It studies real smooth manifolds equipped with Riemannian metrics, i.e., collections of positive-definite symmetric bilinear forms ((g ij )) on their tangent spaces which vary smoothly from point to point. The geometry of such (Riemannian) manifolds is based on the line element ds 2=∑ i,j g ij dx i dx j . This gives, in particular, local notions of angle, length of curve, and volume.

Keywords

Riemannian Manifold Vector Bundle Tangent Space Complex Manifold Tangent Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Amar85]
    Amari S. Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, Springer, Berlin, 1985 MATHCrossRefGoogle Scholar
  2. [Chen72]
    Chentsov N.N. Statistical Decision Rules and Optimal Inferences, Nauka, Moscow, 1972. Google Scholar
  3. [Frie98]
    Frieden B.R. Physics from Fisher Information, Cambridge University Press, Cambridge, 1998. CrossRefGoogle Scholar
  4. [IvSt95]
    Ivanova R. and Stanilov G. A Skew-Symmetric Curvature Operator in Riemannian Geometry, in Symposia Gaussiana, Conf. A, Behara M., Fritsch R. and Lintz R. (eds.), pp. 391–395, 1995. Google Scholar
  5. [Petz96]
    Petz D. Monotone Metrics on Matrix Spaces, Linear Algebra Appl., Vol. 244, pp. 81–96, 1996. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Marie Deza
    • 1
  • Elena Deza
    • 2
  1. 1.École Normale SupérieureParisFrance
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations