Advertisement

General Definitions

  • Michel Marie Deza
  • Elena Deza

Abstract

Let X be a set. A function d:X×X→ℝ is called a distance (or dissimilarity) on X if, for all x,yX, there holds:
  1. 1.

    d(x,y)≥0 (nonnegativity);

     
  2. 2.

    d(x,y)=d(y,x) (symmetry);

     
  3. 3.

    d(x,x)=0 (reflexivity).

     

Keywords

Chromatic Number Isometric Embedding Geodesic Segment Ultrametric Space Normed Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Amba76]
    Ambartzumian R. A Note on Pseudo-metrics on the Plane, Z. Wahrscheinlichkeitstheor. Verw. Geb., Vol. 37, pp. 145–155, 1976. zbMATHCrossRefMathSciNetGoogle Scholar
  2. [Badd92]
    Baddeley A.J. Errors in Binary Images and an L p Version of the Hausdorff Metric, Nieuw Arch. Wiskd., Vol. 10, pp. 157–183, 1992. zbMATHMathSciNetGoogle Scholar
  3. [BLMN05]
    Bartal Y., Linial N., Mendel M. and Naor A. Some Low Distortion Metric Ramsey Problems, Discrete Comput. Geom., Vol. 33, pp. 27–41, 2005. zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Bloc99]
    Bloch I. On Fuzzy Distances and Their Use in Image Processing Under Unprecision, Pattern Recognit., Vol. 32, pp. 1873–1895, 1999. CrossRefGoogle Scholar
  5. [FoSc06]
    Foertsch T. and Schroeder V. Hyperbolicity, CAT(-1)-Spaces and the Ptolemy Inequality, arXiv:math.MG/0605418v2, 13 July 2006.
  6. [GoMc80]
    Godsil C.D. and McKay B.D. The Dimension of a Graph, Q. J. Math., Vol. 31, pp. 423–427, 1980. zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Hemm02]
    Hemmerling A. Effective Metric Spaces and Representations of the Reals, Theor. Comput. Sci., Vol. 284-2, pp. 347–372, 2002. zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Isbe64]
    Isbell J. Six Theorems About Metric Spaces, Comment. Math. Helv., Vol. 39, pp. 65–74, 1964. zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Masc04]
    Mascioni V. Equilateral Triangles in Finite Metric Spaces, Electron. J. Comb., Vol. 11, R18, 2004. MathSciNetGoogle Scholar
  10. [Matt92]
    Matthews S.G. Partial Metric Topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Marie Deza
    • 1
  • Elena Deza
    • 2
  1. 1.École Normale SupérieureParisFrance
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations