Mental Workload, Engagement and Emotions: An Exploratory Study for Intelligent Tutoring Systems

  • Maher Chaouachi
  • Claude Frasson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7315)


Modeling learners’ emotional states is a promising tool for enhancing learning outcomes and tutoring abilities. In this paper, we present a new perspective of learner emotional modeling according to two fundamental dimensions, namely mental workload and engagement. We hypothesize that analyzing results from learners’ workload and engagement evolution can help Intelligent Tutoring Systems diagnose learners’ emotional states and understand the learning process. We demonstrate by an experiment involving 17 participants that learners’ mental workload and engagement are closely related to specific emotions with regard to different learning phases.


Mental workload Mental engagement Emotion modeling ITS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berka, C., Levendowski, D.J., Cvetinovic, M.M., et al.: Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction 17, 151–170 (2004)CrossRefGoogle Scholar
  2. 2.
    Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology 40, 187–195 (1995)CrossRefGoogle Scholar
  3. 3.
    Prinzel, L.J., Freeman, F.G., Scerbo, M.W.: A Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task Allocation. International Journal of Aviation Psychology 10, 393–410 (2000)CrossRefGoogle Scholar
  4. 4.
    Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting Student Misuse of Intelligent Tutoring Systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Arroyo, I., Cooper, D.G., Burleson, W., et al.: Emotion Sensors Go To School. In: Proceeding of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, pp. 17–25. IOS Press (2009)Google Scholar
  6. 6.
    D’Mello, S., Craig, S., Witherspoon, A., et al.: Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction 18, 45–80 (2008)CrossRefGoogle Scholar
  7. 7.
    Forbes-Riley, K., Rotaru, M., Litman, D.J.: The relative impact of student affect on performance models in a spoken dialogue tutoring system. User Modeling and User-Adapted Interaction 18, 11–43 (2008)CrossRefGoogle Scholar
  8. 8.
    Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple sychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2004)CrossRefGoogle Scholar
  9. 9.
    Stevens, R.H., Galloway, T., Berka, C.: EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 187–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect-aware tutors: recognising and responding to student affect. Int. J. Learning Technology 4(3/4), 129–163 (2009)CrossRefGoogle Scholar
  11. 11.
    Chaouachi, M., Jraidi, I., Frasson, C.: Modeling Mental Workload Using EEG Features for Intelligent Systems. User Modeling and User-Adapted Interaction, 50–61 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maher Chaouachi
    • 1
  • Claude Frasson
    • 1
  1. 1.HERON Lab, Computer Science DepartmentUniversity of MontrealCanada

Personalised recommendations