Program Representation for Automatic Hint Generation for a Data-Driven Novice Programming Tutor

  • Wei Jin
  • Tiffany Barnes
  • John Stamper
  • Michael John Eagle
  • Matthew W. Johnson
  • Lorrie Lehmann
Conference paper

DOI: 10.1007/978-3-642-30950-2_40

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7315)
Cite this paper as:
Jin W., Barnes T., Stamper J., Eagle M.J., Johnson M.W., Lehmann L. (2012) Program Representation for Automatic Hint Generation for a Data-Driven Novice Programming Tutor. In: Cerri S.A., Clancey W.J., Papadourakis G., Panourgia K. (eds) Intelligent Tutoring Systems. ITS 2012. Lecture Notes in Computer Science, vol 7315. Springer, Berlin, Heidelberg

Abstract

We describe a new technique to represent, classify, and use programs written by novices as a base for automatic hint generation for programming tutors. The proposed linkage graph representation is used to record and reuse student work as a domain model, and we use an overlay comparison to compare in-progress work with complete solutions in a twist on the classic approach to hint generation. Hint annotation is a time consuming component of developing intelligent tutoring systems. Our approach uses educational data mining and machine learning techniques to automate the creation of a domain model and hints from student problem-solving data. We evaluate the approach with a sample of partial and complete, novice programs and show that our algorithms can be used to generate hints over 80 percent of the time. This promising rate shows that the approach has potential to be a source for automatically generated hints for novice programmers.

Keywords

Intelligent tutoring systems automatic hint generation programming tutors educational data mining and data clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei Jin
    • 1
  • Tiffany Barnes
    • 2
  • John Stamper
    • 3
  • Michael John Eagle
    • 2
  • Matthew W. Johnson
    • 2
  • Lorrie Lehmann
    • 2
  1. 1.Shaw UniversityRaleighUSA
  2. 2.University of North CarolinaCharlotteUSA
  3. 3.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations