Implicit Strategies for Intelligent Tutoring Systems

  • Imène Jraidi
  • Pierre Chalfoun
  • Claude Frasson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7315)


Nowadays several researches in Intelligent Tutoring Systems are oriented toward developing emotionally sensitive tutors. These tutors use different instructional strategies addressing both learners’ cognitive and affective dimensions and rely, for most of them, on explicit strategies and direct interventions. In this paper we propose a new approach to augment these tutors with new implicit strategies relying on indirect interventions. We show the feasibility of our approach through two experimental studies using a subliminal priming technique. We demonstrate that both learners’ cognitive and affective states can be conditioned indirectly and show that these strategies produce a positive impact on students’ interaction experience and enhance learning.


Implicit tutoring strategies Unconscious processes Subliminal priming Affect Cognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seidel, R.J., Park, O.: An Historical Perspective and a Model for Evaluation of Intelligent Tutoring Systems. Journal of Educational Computing Research 10(2), 103–128 (1994)CrossRefGoogle Scholar
  2. 2.
    Phelps, E.A.: Emotion and cognition: Insights from Studies of the Human Amygdala. Annual Review Psychology 57, 27–53 (2006)CrossRefGoogle Scholar
  3. 3.
    Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A., Mahadevan, S., Woolf, B.P.: Repairing Disengagement With Non-Invasive Interventions. In: Artificial Intelligence in Education: Building Technology Rich Learning Contexts That Work. IOS Press (2007)Google Scholar
  4. 4.
    Burleson, W.: Affective learning companions: strategies for empathetic agents with real-time multimodal affective sensing to foster meta-cognitive approaches to learning, motivation, and perseverance, MIT PhD thesis (2006)Google Scholar
  5. 5.
    Conati, C.: Probabilistic Assessment of User’s Emotions in Educational Games. Applied Artificial Intelligence 16, 555–575 (2002)CrossRefGoogle Scholar
  6. 6.
    D’Mello, S., Graesser, A.: Automatic detection of learner’s affect from gross body language. Applied Artificial Intelligence 23, 123–150 (2009)CrossRefGoogle Scholar
  7. 7.
    Litman, D., Forbes-Riley, K.: Annotating student emotional states in spoken tutoring dialogues. In: SIGdial Workshop on Discourse and Dialogue, Boston, USA, pp. 144–153 (2004)Google Scholar
  8. 8.
    Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect aware tutors: recognising and responding to student affect. Int. J. Learn. Technol. 4(3/4), 129–164 (2009)CrossRefGoogle Scholar
  9. 9.
    Pekrun, R.: The Impact of Emotions on Learning and Achievement: Towards a Theory of Cognitive/Motivational Mediators. Applied Psychology 41(4), 359–376 (1992)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.: Empathetic virtual peers enhanced learner interest and self-efficacy. In: Workshop on Motivation and Affect in Educational Software, in Conjunction with the 12th International Conference on Artificial Intelligence in Education (2005)Google Scholar
  11. 11.
    McQuiggan, S.W., Lee, S.Y., Lester, J.C.: Early Prediction of Student Frustration. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 698–709. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Prendinger, H., Ishizuka, M.: The empathic companion: A character-based interface that addresses users’ affective states. Applied Artificial Intelligence 19, 267–285 (2005)CrossRefGoogle Scholar
  13. 13.
    Kouider, S., Dehaene, S., Jobert, A., Le Bihan, D.: Cerebral Bases of Subliminal and Supraliminal Priming during Reading. Cereb. Cortex 17(9), 2019–2029 (2007)CrossRefGoogle Scholar
  14. 14.
    Mayer, J.D., Allen, J., Beauregard, K.: Mood inductions for four specific moods: A procedure employing guided imagery vignettes with music. Journal of Mental Imagery 19, 133–150 (1995)Google Scholar
  15. 15.
    Del Cul, A., Baillet, S., Dehaene, S.: Brain dynamics underlying the nonlinear threshold for access to consciousness. Public Library of Science, Biology 5(10), 2408–2423 (2007)Google Scholar
  16. 16.
    Hassin, R., Uleman, J., Bargh, J.: The new unconscious. Oxford University Press, Oxford (2005)Google Scholar
  17. 17.
    Tulving, E., Schacter, D.: Priming and human memory systems. Science 247(4940), 301–306 (1990)CrossRefGoogle Scholar
  18. 18.
    Bargh, J.A., Chaiken, S., Govender, R., Pratto, F.: The generality of the automatic attitude activation effect. Journal of Personality and Social Psychology 62(6), 893–912 (1992)CrossRefGoogle Scholar
  19. 19.
    Jraidi, I., Frasson, C.: Subliminally Enhancing Self-esteem: Impact on Learner Performance and Affective State. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6095, pp. 11–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Grumm, M., Nestler, S., Von Collani, G.: Changing explicit and implicit attitudes: The case of self-esteem. Journal of Experimental Social Psychology 45(2), 327–335 (2009)CrossRefGoogle Scholar
  21. 21.
    LeBel, E.P., Gawronski, B.: How to find what’s in a name: Scrutinizing the optimality of five scoring algorithms for the name-letter task. European Journal of Personality 23, 85–106 (2009)CrossRefGoogle Scholar
  22. 22.
    Lang, P.J.: The emotion probe: Studies of motivation and attention. Am. Psy. 50(5), 372–385 (1995)CrossRefGoogle Scholar
  23. 23.
    Russell, J.: A circumplex model of affect. JPSP 39, 1161–1178 (1980)Google Scholar
  24. 24.
    Kaiser, R.: Prototypical development of an affective component for an e-learning system. Master Thesis, Department of Computer Science, University of Rostock, Germany (2006)Google Scholar
  25. 25.
    Gaillard, R., Naccache, L., Pinel, P., Clémenceau, S., Volle, E., Hasboun, D., Dupont, S., Baulac, M., Dehaene, S., Adam, C., Cohen, L.: Direct Intracranial, fMRI, and Lesion Evidence for the Causal Role of Left Inferotemporal Cortex in Reading. Neuron 50, 191–204 (2006)CrossRefGoogle Scholar
  26. 26.
    Chalfoun, P., Frasson, C.: Subliminal cues while teaching: HCI technique for enhanced learning. Advances in Human Computer Interaction: Special Issue on Subliminal Communication in Human-Computer Interaction (January 2011)Google Scholar
  27. 27.
    Sandkühler, S., Bhattacharya, J.: Deconstructing insight: EEG correlates of Insightful Problem Solving. PLOS One 3(1) (2008)Google Scholar
  28. 28.
    Hyungkyu, K., Jangsik, C., Eunjung, L.: EEG Asymmetry Analysis of the Left and Right Brain Activities During Simple versus Complex Arithmetic Learning. Journal of Neurotherapy 13 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Imène Jraidi
    • 1
  • Pierre Chalfoun
    • 1
  • Claude Frasson
    • 1
  1. 1.Dept. of Computer Science and Operations ResearchUniversité de MontréalCanada

Personalised recommendations