Inorganic Soil Components—Minerals and Rocks

  • Hans-Peter Blume
  • Gerhard W. Brümmer
  • Heiner Fleige
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Abstract

The soil’s position in the material cycle of the lithosphere (Fig. 2.1) shows that a large number of processes are involved in the formation of rocks, lithogenesis, in the form of a cycle. At the beginning of lithogenesis, rocks are formed through crystallization when the molten magma cools down. They are subject to further diverse changes through the processes of weathering, erosion, transport, deposition, diagenesis, metamorphism and anatexis, which are connected to one another in a cycle. Soils are a significant station in this cycle. On the one hand, they are the result of the transformation of rock in contact with the atmosphere, hydrosphere and biosphere (pedogenesis), and on the other, they deliver material for the formation of new rocks. For this reason, soils cannot be understood and classified without knowledge of the rocks; however, the same is true for many rocks without knowledge of the soils (Kittrick 1985).

Keywords

Clay Mineral Metamorphic Rock Igneous Rock Acid Sulfate Soil Octahedral Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Supplementary Reading

  1. Altermann M (1998) Separation of periglacial layers Gliederung periglazialer Lagen. S. 175–180. In: Arbeitskreis für Bodensystematik der DBG (Hrsg.). Systematik der Böden und der bodenbildenden Substrate Deutschlands. Mitt. Dtsch. Bodenkundliche Ges. 86 OldenburgGoogle Scholar
  2. Banfield JF, Nealson KH (1997) Geomicrobiology: interactions between microbes and minerals. Rev Miner 35Google Scholar
  3. Blume H-P (1996) Böden städtisch-industrieller Verdichtungsräume. In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  4. Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  5. Drever J (1985) The chemistry of weathering. Reidel, DordrechtGoogle Scholar
  6. Ehlers J (1994) Allgemeine und historische Quartärgeologie. Enke, StuttgartGoogle Scholar
  7. Furrer G, Sticher H (1999) Chemische Verwitterungsprozesse (Chap. 2.1.3.2). In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  8. Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Freeman, San FranciscoGoogle Scholar
  9. Heaney PJ, Prewitt CT, Gibbs GV (1994) Silica: physical behavior, geochemistry and materials application. Rev Miner 29:606Google Scholar
  10. Markl G (2008) Minerale und Gesteine, 2nd edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  11. Meuser H (1993) Technogene Substrate des Ruhrgebietes, Z. Pflanzenernährung Bodenk. 156: 137–142Google Scholar
  12. Ollier C (1984) Weathering. Oliver & Boyd, EdinburgGoogle Scholar
  13. Rahmdor P, Strunz H (1978) Klockmanns Lehrbuch der Mineralogie, 16th edn. Enke, StuttgartGoogle Scholar
  14. Sebastian U (2009) Gesteinskunde. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  15. Stahr K (1979) Die Bedeutung periglazialer Deckschichten für Bodenbildung und Standortseigenschaften im Südschwarzwald. Freiburger Bodenkundl. Abh. H.9Google Scholar
  16. Stow DAV (2008) Sedimentgesteine im Gelände. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  17. Vinx R (2008) Gesteinsbestimmung im Gelände, 2nd edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  18. Weise OR (1983) Das Periglazial. Borntraeger, BerlinGoogle Scholar
  19. Wilson MJ (1994) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman & Hall, LondonGoogle Scholar

Cited References

  1. Alaily F (1996) Carbonate, Gips und lösliche Salze (Chap. 2.1.4.3). In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  2. Alaily F (1998) Carbonate, sulfate, chloride, phosphate (Chap. 2.1.1.3). In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  3. Alaily F (2000) Carbonate and salts (Chap. 2.1.5.5). In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  4. Bailey SW (1991) Hydrous phyllosilicates (exclusive of micas). Rev Miner 19Google Scholar
  5. Brindley GB, Brown G (1984) Crystal structure of clay minerals and their X-ray identification. Miner Soc London (Monograph 5)Google Scholar
  6. Carmichel IS, Turner FJ, Veerhoogen J (1974) Igneous petrology. McGraw Hill, New YorkGoogle Scholar
  7. Cornell RM, Schwertmann U (1996) The iron oxides. Wiley VCH, WeinheimGoogle Scholar
  8. Dixon JB, Weed SB (1989) Minerals in soils and environments. Soil Science Society of America, MadisonGoogle Scholar
  9. Füchtbauer H (1988) Sedimente und Sedimentgesteine. Schweizerbart, StuttgartGoogle Scholar
  10. Hudson BD (1995) Reassessment of polynov’s ion mobility series. Soil Sci Soc Am J 59:1101–1103Google Scholar
  11. Jasmund K, Lagaly G (1993) Tonminerale und Tone. Steinkopff, DarmstadtGoogle Scholar
  12. Kittrick JA (1985) Mineral classification of soils, vol 16. Soil Science Society of America Special Publication, MadisonGoogle Scholar
  13. Knaus KG, Wolery TJ (1986) Dependence of albite dissolution kinetics on pH and time at 25 °C and 70 °C. Geochim Et Cosmochim Acta 50: 2481–2497Google Scholar
  14. Lasaga AC (2014) Kinetic theory in earth sciences, pp. 824. Princetown University PressGoogle Scholar
  15. Nahon DB (1991) Introduction to the petrology of soils and chemical weathering. Wiley, New YorkGoogle Scholar
  16. Newman ACD (1987) Chemistry of clays and clay minerals. Miner Soc, LondonGoogle Scholar
  17. Niederbudde E-A (1996) Tonminerale. In: Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff) Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  18. Stanjek H (1997) Gesteinsbildende Oxide (Chap. 2.1.1.2). In Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff): Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  19. Stanjek H (1998) Pedogene oxide (Chap. 2.1.5.4). In Blume H-P, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (Hrsg.) (1996 ff): Handbuch der Bodenkunde, ecomed, Landsberg; ab 2007. Wiley VCH, WeinheimGoogle Scholar
  20. Tucker M (1996) Methoden der Sedimentologie. Enke, StuttgartGoogle Scholar
  21. Waychunas GA (1991) Crystal chemistry of oxides and oxyhydroxides. Rev Miner Geochem 25(1):11–68Google Scholar
  22. Wedepohl KH (ed) (1969) Handbook of geochemistry. Springer, BerlinGoogle Scholar
  23. White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. Rev Miner 31:583Google Scholar
  24. Wimmenauer W (1985) Petrographie der magmatischen und metamorphen Gesteine. Enke, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hans-Peter Blume
    • 1
  • Gerhard W. Brümmer
    • 6
  • Heiner Fleige
    • 1
  • Rainer Horn
    • 1
  • Ellen Kandeler
    • 2
  • Ingrid Kögel-Knabner
    • 3
  • Ruben Kretzschmar
    • 4
  • Karl Stahr
    • 2
  • Berndt-Michael Wilke
    • 5
  1. 1.Institute of Plant Nutrition and Soil SciencesChristian-Albrechts-University zu KielKielGermany
  2. 2.Institute for Soil Science and Land EvaluationHohenheim UniversityStuttgartGermany
  3. 3.Chair of Soil ScienceTechnische Universität MünchenFreising-WeihenstephanGermany
  4. 4.Institute of Biogeochemistry and Pollutant DynamicsETH ZurichZurichSwitzerland
  5. 5.Institute of EcologyTechnical University BerlinBerlinGermany
  6. 6.Institute of Crop Science and Resource ConservationUniversity of BonnBonnGermany

Personalised recommendations