Skip to main content

Angle-Resolved Photoemission Spectroscopy

  • Chapter
  • First Online:
Book cover Theory of Bilayer Graphene Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 1378 Accesses

Abstract

The angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental tool based on the photoelectric effect, first observed by Hertz more than 120 years ago [1] and explained by Einstein at the beginning of the previous century with the help of the then novel idea of photons, quanta of electromagnetic radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Hertz, Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 267, 983 (1887)

    Article  Google Scholar 

  2. A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132 (1905)

    Article  Google Scholar 

  3. P.M. Williams, The direct evaluation of electronic band structures of layered solids using angle-resolved photoemission. Il Nuovo Cimento 38B, 216 (1977)

    ADS  Google Scholar 

  4. I.T. McGovern, W. Eberhardt, E.W. Plummer, J.E. Fischer, The bandstructures of graphite and graphite intercalation compounds as determined by angle resolved photoemission using synchrotron radiation. Physica 99B, 415 (1980)

    Google Scholar 

  5. W. Eberhardt, I.T. McGovern, E.W. Plummer, J.E. Fisher, Charge-transfer and non-rigid-band effects in the graphite compound \(Li\) \(C_{6}\). Phys. Rev. Lett. 44, 200 (1980)

    Article  ADS  Google Scholar 

  6. A.R. Law, J.J. Barry, H.P. Hughes, Angle-resolved photoemission and secondary electron emission from single-crystal graphite. Phys. Rev. B 28, 5332 (1983)

    Article  ADS  Google Scholar 

  7. T. Takahashi, H. Tokailin, S. Sagawa, Electronic band structure of graphite studied by highly angle-resolved ultraviolet photoelectron spectroscopy. Solid State Commun. 52, 765 (1984)

    Article  ADS  Google Scholar 

  8. A. Santoni, L.J. Terminello, F.J. Himpsel, T. Takahashi, Mapping the Fermi surface of graphite with a display-type photoelectron spectrometer. Appl. Phys. A 52, 299 (1991)

    Article  ADS  Google Scholar 

  9. E.L. Shirley, L.J. Terminello, A. Santoni, F.J. Himpsel, Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614 (1995)

    Article  ADS  Google Scholar 

  10. E. Rollings, G.-H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Federov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 67, 2172 (2006)

    Article  ADS  Google Scholar 

  11. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejede, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W.A. de Heer, A. Lanzara, E.H. Conrad, First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)

    Article  ADS  Google Scholar 

  12. Y.S. Dedkov, M. Fonin, C. Laubschat, A possible source of spin-polarized electrons: the inert graphene/Ni(111) system. Appl. Phys. Lett. 92, 052506 (2008)

    Article  ADS  Google Scholar 

  13. Y.S. Dedkov, M. Fonin, U. Rüdiger, C. Laubschat, Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 100, 107602 (2008)

    Article  ADS  Google Scholar 

  14. A. Grüneis, D.V. Vyalikh, Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 77, 193401 (2008)

    Article  ADS  Google Scholar 

  15. A. Grüneis, K. Kummer, D.V. Vyalikh, Dynamics of graphene growth on a metal surface: a time-dependent photoemission study. New J. Phys. 11, 073050 (2009)

    Article  ADS  Google Scholar 

  16. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 102, 056808 (2009)

    Article  ADS  Google Scholar 

  17. C. Enderlein, Y.S. Kim, A. Bostwick, E. Rotenberg, K. Horn, The formation of an energy gap in graphene on ruthenium by controlling the interface. New J. Phys. 12, 033014 (2010)

    Article  ADS  Google Scholar 

  18. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Quasiparticle dynamics in graphene. Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  19. A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Renormalization of graphene bands by many-body interactions. Solid State Commun. 143, 63 (2007)

    Article  ADS  Google Scholar 

  20. A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Band structure and many body effects in graphene. Eur. Phys. J. 148, 5 (2007)

    Google Scholar 

  21. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  22. C.-H. Park, F. Giustino, M.L. Cohen, S.G. Louie, Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction. Phys. Rev. Lett. 99, 086804 (2007)

    Article  ADS  Google Scholar 

  23. M. Calandra, F. Mauri, Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular-resolved photoemission spectra. Phys. Rev. B 76, 205411 (2007)

    Article  ADS  Google Scholar 

  24. W.-K. Tse, S. Das Sarma, Phonon-induced many-body renormalization of the electronic properties of graphene. Phys. Rev. Lett. 99, 236802 (2007)

    Article  ADS  Google Scholar 

  25. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Plasmons and the spectral function of graphene, Phys. Rev. B 77, 081411(R) (2008)

    Google Scholar 

  26. P.E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, V. Olevano, Ab initio GW many-body effects in graphene. Phys. Rev. Lett. 101, 226405 (2008)

    Article  ADS  Google Scholar 

  27. C.-H. Park, F. Giustino, C.D. Spataru, M.L. Cohen, S.G. Louie, Angle-resolved photoemission spectra of graphene from first-principles calculations. Nano Lett. 9, 4234 (2009)

    Article  ADS  Google Scholar 

  28. A. Bostwick, T. Ohta, J.L. McChesney, K.V. Emtsev, T. Seyller, K. Horn, E. Rotenberg, Symmetry breaking in few layer graphene films. New J. Phys. 9, 385 (2007)

    Article  ADS  Google Scholar 

  29. E. Rotenberg, A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, Origin of the energy bandgap in epitaxial graphene, Nat. Mat. 7, 258 (2007) [comment on Zhou et al., [21]]

    Google Scholar 

  30. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mat. 7, 259 (2007), Authors’ response [to the comment by Rotenberg et al., [29]]

    Google Scholar 

  31. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  32. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101, 086402 (2008)

    Article  ADS  Google Scholar 

  33. C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81, 235401 (2010)

    Article  ADS  Google Scholar 

  34. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007)

    Article  ADS  Google Scholar 

  35. A. Bostwick, K.V. Emtsev, K. Horn, E. Huwald, L. Ley, J.L. McChesney, T. Ohta, J. Riley, E. Rotenberg, F. Speck, T. Seyller, Photoemission studies of graphene on SiC: growth, interface, and electronic structure. Adv. Solid State Phys. 47, 159 (2008)

    Article  ADS  Google Scholar 

  36. A. Bostwick, J.L. McChesney, T. Ohta, E. Rotenberg, T. Seyller, K. Horn, Experimental studies of the electronic structure of graphene. Prog. Surf. Sci. 84, 380 (2009)

    Article  ADS  Google Scholar 

  37. F.J. Himpsel, Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1 (1983)

    Article  ADS  Google Scholar 

  38. A. Damascelli, Probing the electronic structure of complex systems by ARPES. Phys. Scr. T109, 61 (2004)

    Article  ADS  Google Scholar 

  39. S.Y. Zhou, G.-H. Gweon, J. Graf, A.V. Fedorov, C.D. Spataru, R.D. Diehl, Y. Kopelevich, D.-H. Lee, S.G. Louie, A. Lanzara, First direct observation of Dirac fermions in graphite. Nat. Phys. 2, 595 (2006)

    Article  Google Scholar 

  40. M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V.I. Fal’ko, A. Bostwick, E. Rotenberg, Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 (2008)

    Article  ADS  Google Scholar 

  41. R.P. Feynman, The Feynman Lectures on Physics, vol III (Addison-Wesley, Reading, Massachusetts, 1963)

    Google Scholar 

  42. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  43. D.P. DiVincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  44. C. Bena, G. Montambaux, Remarks on the tight-binding model of graphene. New J. Phys. 11, 095003 (2009)

    Article  ADS  Google Scholar 

  45. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 183 (2007)

    Article  Google Scholar 

  46. M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3 (2007)

    Article  ADS  Google Scholar 

  47. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  48. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mucha-Kruczynski .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mucha-Kruczynski, M. (2013). Angle-Resolved Photoemission Spectroscopy. In: Theory of Bilayer Graphene Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30936-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30936-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30935-9

  • Online ISBN: 978-3-642-30936-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics