Advertisement

Conclusions

  • Carsten Brée
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the present thesis, femtosecond filamentation was investigated. While the first part of this work explores the self-compression both, theoretically and experimentally, and reveals the physical mechanisms behind this remarkable phenomenon, the second part affects the foundations of femtosecond filamentation and, moreover, those of nonlinear optics at extreme intensities. A totally new approach for a theoretical prediction of the magnitude of the higher-order nonlinear susceptibilties is presented, which is in excellent agreement with recent experimental results [1].

Keywords

Recent Experimental Result Nonlinear Refraction Extreme Intensity Filament Core Typical Experimental Setup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    V.F. D’Yachenko, V.S. Imshenik, Magnetohydrodynamic theory of the pinch effect in a dense high-temperature plasma (dense plasma focus). Rev. Plasma Phys. 5, 447 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    S.L. Chin, Y. Chen, O. Kosareva, V.P. Kandidov, F. Théberge, What is a filament? Laser Phys. 18, 962 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    S. Champeaux, L. Bergé, Postionization regimes of femtosecond laser pulses self-channeling in air. Phys. Rev. E 71, 046604 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, Cascaded self-compression of femtosecond pulses in filaments. New J. Phys. 12, 093046 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Skupin, L. Bergé, U. Peschel, F. Lederer, Interaction of femtosecond light filaments with obscurants in aerosols. Phys. Rev. Lett. 93, 023901 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    L. Berge, S. Skupin, G. Steinmeyer, Temporal self-restoration of compressed optical filaments. Phys. Rev. Lett. 101, 213901 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L. Bergé, S. Skupin, G. Steinmeyer, Self-recompression of laser filaments exiting a gas cell. Phys. Rev. A 79, 033838 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. van Stryland, Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components: erratum. Opt. Express 18, 3011 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V.S. Popov, Tunnel and multiphoton ionization of atoms and ions in a strong laser field. Phys. Usp. 47, 855 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Teleki, E.M. Wright, M. Kolesik, Microscopic model for the higher-order nonlinearity in optical filaments. Phys. Rev. A 82, 065801 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kolesik, E.M. Wright, J.V. Moloney, Femtosecond filamentation and higher-order nonlinearities. Opt. Lett. 35, 2550 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, O. Faucher, From higher-order Kerr nonlinearities to quantitative modeling of third and fifth harmonic generation in argon. Opt. Lett. 36, 828 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Kosma, S.A. Trushin, W.E. Schmid, W. Fuß, Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33, 723 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics Leibniz Institute in Forschungsverbund Berlin e. V.Humboldt UniversityBerlinGermany

Personalised recommendations