Advertisement

Tool Making

  • Ekkard Brinksmeier
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Tool materials for forming processes require good ductility with high hardness and high wear resistance. In the case of micro cold forming, additional aspects have to be considered in the tool material selection. The tool shape requires structures of microscopic dimensions, i.e. edge radii, bores and notches in submillimeter sizes, which need to be formed or machined. Viscous lubricants should be avoided, because they hinder the further handling of the workpieces. The use of tools without lubricant accelerates wear and might aggravate corrosion. Wear and corrosion debris on the tool surface are unacceptable for working with microscopic structures. Thermal effects of friction require additional attention to chemical processes at the surface.

Keywords

Material Removal Material Removal Rate Heat Affected Zone Chip Thickness Tool Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Latin

a

Distance (mm)

Aa, xy

Laser affected area (m2)

aec

Width of cut (µm)

ala

Laser track distance (µm)

AMus

Ultrasonic amplitude (µm)

apc

Depth of cut (µm)

cp

Specific heat capacity (J kg−1 K−1)

cR

Material optical reflectivity

cα

Optical absorption coefficient (m−1)

d

Diameter (µm)

D

Diffusion coefficient

dG

Diamond grain size (µm)

dla

Laser beam diameter (µm)

dmin

Laser subtracted diameter (M)

E

Elastic modulus (N/mm²)

EA

Activation energy (J)

F

Force (N)

FN

Normal force (N)

f

Focal distance (m)

fla

Pulse frequency (laser repetition time) (Hz)

fus

Ultrasonic frequency (Hz)

fz

Feed per tooth (µm)

HK

Knoop hardness

ha

Laser affected depth (m)

hc

Chip thickness (µm)

hcu

Uncut chip thickness (µm)

hcu,crit

Material specific, critical uncut chip thickness (µm)

hcu,max

Maximum uncut chip thickness (µm)

hcu,min

Minimum uncut chip thickness (µm)

hs

Laser subtracted depth (m)

hλ

Optical penetration depth (m)

I

Incident intensity (W m−2)

I0

Peak incident intensity (W m−2)

Iab

Peak absorbed intensity (W m−2)

ich

Chemical activity

j

Number of cutting edges

K

Thermal conductivity (W m−1 K−1)

Kc

Fracture toughness (MPa* m1/2)

KF

Faraday constant

Kp

Preston constant

kλ

Optical damping constant

p

Pressure (N/mm²)

Pla

Average laser power (W)

PRR

Reactive sticking probability

Pus

Ultrasonic power (W)

Q′w

Specific material removal rate (mm³/(mm*s))

Qw

Material removal rate (mm³/s)

r

Radius (mm)

r0

Radius of the diffusing particles

Ra

Roughness, profile, arithmetic (nm)

Rz

Roughness, profile, average maximum height (m)

ra, x(y)

Laser affected radius (m)

rL

Laser beam radius at the optical lens (m)

rM

Laser melted radius (m)

rs, x(y)

Laser subtracted radius (m)

rth

Thermal penetration radius (heat affected zone) (m)

rw

Laser beam waist radius (m)

rβ

Cutting edge radius (µm)

Sa

Roughness, area, arithmetic (nm)

Sk

Roughness, area, core roughness depth (nm)

Spk

Roughness, area, reduced summit height (nm)

Sq

Roughness, area, root mean squared (nm)

Svk

Roughness, area, reduced valley depth (nm)

t

Time (s)

T

Absolute temperature (K)

T0

Ambient (initial) temperature (K)

TB

Absolute temperature of boiling (K)

TM

Absolute temperature of melting (K)

Tsc

Absolute surface temperature (K)

tB

Material boiling time (s)

tD

Dwell time of laser-material interaction (pulse duration) (s)

te-ph

Electron-phonon scattering time (s)

tR

Material removal time (s)

\( \dot{V} \)

Volume material removal rate (m3/s)

\( \dot{V}_{e} \)

Flow rate of the etchant (ml/min)

vc

Cutting speed (m/min)

vf

Feed velocity (mm/min)

vf

Feed rate (m s−1)

vrel

Relative velocity (m/s)

vscan

Scanning speed (m s−1)

vt

Tangential velocity (mm/s)

vz

Drilling velocity (m s−1)

Z

Densification ratio

zn

Powder bed height for the nth layer (mm)

zT

Platform lowering distance (mm)

Greek

α

Thermal expansion coefficient (K−1)

β

Angle of incidence (°)

γ

Rake angle (°)

δ

Thickness of the Nernst layer

ΔHM

Enthalpy of melting (J kg−1)

ΔHV

Enthalpy of vaporization (J kg−1)

ζ

Beam quality factor

η

Dynamic viscosity of the liquid

θg

Angle of grit blasting (°)

θmf

Angle of molten material front (°)

θ0

External angle of laser light incidence (°)

ρ

Material density (kg m−3)

ρbulk

Density of the consolidated powder (g/cm³)

ρpowder

Density of the loose powder (g/cm³)

κ

Thermal diffusion coefficient (m2 s−1)

κel

Electron diffusion coefficient (m2 s−1)

λ

Optical wavelength (M)

ϕ

Laser fluence (J m−2)

ϕab

Absorbed laser fluence (J m−2)

ϕLoss

Fluence losses (J m−2)

ψel

Electrochemical potential

References

  1. 1.
    Aharonov, R.R., Chhowalla, M., Dhar, S., Fontana, R.P.: Factors affecting growth defect formation in cathodic arc evaporated coatings. Surf. Coat. Technol. 82, 334–343 (1996)CrossRefGoogle Scholar
  2. 2.
    Aramcharoen, A., Mativenga, P.T.: Size effect and tool geometry in micromilling of tool steel. Precision Engineering 33, 402–407 (2009)CrossRefGoogle Scholar
  3. 3.
    Bäuerle, D.: Laser Processing and Chemistry, 4th edn. Springer Berlin, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bifano, T.G., Dow, T.A., Scattergood, R.O.: Ductile-regime grinding: A new technology for machining brittle materials. J. Eng. Ind. Trans. ASME 113(2), 184–189 (1991)CrossRefGoogle Scholar
  5. 5.
    Bobzin, K., Bagcivan, N., Immich, P., Warnke, C., Klocke, F., Zeppenfeld, C., Mattfeld, P.: Advancement of a nanolaminated TiHfN/CrN PVD tool coating by a nano-structured CrN top layer in interaction with a biodegradable lubricant for green metal forming. Surf. Coat. Technol. 203, 3184–3188 (2009)CrossRefGoogle Scholar
  6. 6.
    Brinksmeier, E., Klopfstein, M., Riemer, O.: Removal of diamond by solid metals. In: 2nd International Conference on Nanomanufacturing and the 1st CIRP Conference on Nanomanufacturing (2010)Google Scholar
  7. 7.
    Brinksmeier, E., Riemer, O., Gessenharter, A., Autschbach, L.: Polishing of structured molds. CIRP Ann. Manuf. Technol. 53(1), 247–250 (2004)CrossRefGoogle Scholar
  8. 8.
    Brinksmeier, E., Riemer, O., Gessenharter, A.: Finishing of structured surfaces by abrasive polishing. Precis. Eng. 30(3), 325–336 (2006)CrossRefGoogle Scholar
  9. 9.
    Brinksmeier, E., Riemer, O., Twardy, S.: Tribological behaviour of micro structured surfaces for micro forming tools. Int. J. Mach. Tools Manuf. 50(4), 425–430 (2010)CrossRefGoogle Scholar
  10. 10.
    Brinksmeier, E., Riemer, O., Rickens, K., Meiners, K.: Kinematics in ultra-precision grinding of WC moulds. Int. J. Nanomanuf. 7(3–4), 199–213 (2011)CrossRefGoogle Scholar
  11. 11.
    Butt, H.-J., Graf, K., Kappl, M.: Physics and Chemistry of Interfaces. Wiley-VCH, Weinheim (2003)CrossRefGoogle Scholar
  12. 12.
    Cappellia, E., Orlandob, S., Matteia, G., Armigliatoc, A.: Boron nitride thin films deposited by RF plasma reactive pulsed laser ablation as interlayer between WC–Co hard metals and CVD diamond films. Surf. Coat. Technol. 180–181, 184–189 (2004)CrossRefGoogle Scholar
  13. 13.
    Cekada, M., Panjan, P., Kek-Merl, D., Panjan, M., Kapun, G.: SEM study of defects in PVD hard coatings. Vacuum 82, 252–256 (2008)CrossRefGoogle Scholar
  14. 14.
    Choy, K.L.: Chemical vapour deposition of coatings. Prog. Mater. Sci. 48, 57–170 (2003)CrossRefGoogle Scholar
  15. 15.
    Chrysolouris, G., Bredt, J., Kordas, S., Wilson, E.: Theoretical aspects of a laser machine tool. J. Eng. Ind. 110, 65–70 (1988)CrossRefGoogle Scholar
  16. 16.
    Chun, M.K., Rose, K.: Interaction of high-intensity laser beams with metals. J. Appl. Phys. 41, 614 (1970)CrossRefGoogle Scholar
  17. 17.
    Craeghs, T., Clijsters, S., Yasa, E., Bechmann, F., Berumen, S., Kruth, J.-P.: Determination of geometrical factors in layerwise laser melting using optical process monitoring. Opt. Lasers Eng. 49(12), 1440–1446 (2011)CrossRefGoogle Scholar
  18. 18.
    Cui, C., Schulz, A., Uhlenwinkel, V., Zoch, H.-W.: Spray-formed stainless steel matrix composites with co-injected carbide particles. Metall. Mater. Trans. A 42(8), 2442–2455 (2011)CrossRefGoogle Scholar
  19. 19.
    Dahotre, N.B., Harimkar, N.P.: Laser Fabrication and Machining of Materials. Springer, New York (2008)Google Scholar
  20. 20.
    Dausinger, F.: Femtosecond technology for precision manufacturing: Fundamental and technical aspects. Riken Rev. 50, 77 (2003)Google Scholar
  21. 21.
    De Lodyguine, J.S.: Illuminant for incandecent lamps. US patent 575, 002 (1893)Google Scholar
  22. 22.
    De Silva, A.K.M., Pajak, P.T., McGeough, J.A., Harrison, D.K.: Thermal effects in laser assisted jet electrochemical machining. CIRP Ann. Manuf. Technol. 60, 243–246, (2011)Google Scholar
  23. 23.
    Dobrzañski, L.A., Kloc-Ptaszna, A., Matula, G., Torralba, L.B.: Structure of the gradient carbide steels of HS 6–5-2 high-speed steel matrix. Arch. Mater. Sci. Eng. 28(10), 589–592 (2007)Google Scholar
  24. 24.
    Doppelt, P.: Why is coordination chemistry stretching the limits of micro-electronics technology? Coord. Chem. Rev. 178–180, 1785–1809 (1998)CrossRefGoogle Scholar
  25. 25.
    Dornfeld, D., Min, S., Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. Manuf. Technol. 55(2), 745–768 (2006)CrossRefGoogle Scholar
  26. 26.
    Dumitru, G., Romano, V., Weber, H.P., Sentis, M., Marine, W.: Femtosecond ablation of ultrahard materials. Appl. Phys. A 74, 729–739 (2002)CrossRefGoogle Scholar
  27. 27.
    Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B.: Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 57(5), 911–946 (2012)CrossRefGoogle Scholar
  28. 28.
    Fischmeister, H.F., Exner, H.E., Poech, M.H., Kohlhoff, S., Gumbsch, P., Schmauder, S., Sigl, L.S., Spiegler, R.: Modelling fracture processes in metals and composite materials. Z. Metallkde 80(12), 839–846 (1989)Google Scholar
  29. 29.
    Gäbler, J., Schäfer, L., Menze, B., Hoffmeister, H.W.: Micro abrasive pencils with CVD diamond coating. Diam. Relat. Mater. 12, 707–710 (2003)CrossRefGoogle Scholar
  30. 30.
    Gagliano, F.P., Paek, U.C.: Observation of laser-induced explosion of solid materials and correlation with theory. Appl. Opt. 13, 274–279 (1974)CrossRefGoogle Scholar
  31. 31.
    Gajapathi, C.S., Mitra, S.K., Mendez, P.F.: Controlling heat transfer in micro electron beam welding using volumetric heating Int. J. Heat Mass Transf. 54, 5545–5553 (2011)zbMATHCrossRefGoogle Scholar
  32. 32.
    Garibotti, D.J.: Dicing of micro-semiconductors, US Patent 3,112,850 (1963)Google Scholar
  33. 33.
    Ghany, K.A., Newishy, M.: Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J. Mater. Process. Technol. 168, 438–447 (2005)CrossRefGoogle Scholar
  34. 34.
    Gu, D., Wang, Z., Shen, Y., Li, Q., Li, Y.: In-situ TiC particle reinforced Ti–Al matrix composites: Powder preparation by mechanical alloying and selective laser melting behavior. Appl. Surf. Sci. 255, 9230–9240 (2009)CrossRefGoogle Scholar
  35. 35.
    Harp, W.R., Dilwith, J.R., Tu, J.F.: Laser ablation using a long-pulsed, high fluence, CW single-mode fiber laser. J. Mater. Process. Technol. 198, 22–30 (2008)CrossRefGoogle Scholar
  36. 36.
    Harrison, P.M., Henry, M., Henderson, I., Brownell, M.: Laser milling of metallic and non-metallic substrates in the nanosecond regime with Q-switched diode pumped solid state lasers. Proc. SPIE 5448, 624–633 (2004)CrossRefGoogle Scholar
  37. 37.
    Henry, M., Harrison, P.M., Henderson, I., Brownell, M.: Laser milling–A practical industrial solution for machining a wide variety of materials. Proc. SPIE 5662, 627–632 (2004)CrossRefGoogle Scholar
  38. 38.
    Herziger, G.; Kreutz, E.W.: Fundamentals of laser micromachining of metals. In: Bäuerle, D. (ed.) Laser Processing and Diagnostics, Springer Series in Chemical Physics, vol. 39, p. 90. Springer Berlin, Heidelberg (1984)Google Scholar
  39. 39.
    Holleck, H., Schier, V.: Multilayer PVD coatings for wear protection. Surf. Coat. Technol. 76–77, 328–336 (1995)CrossRefGoogle Scholar
  40. 40.
    Hua, Z., Jiawen, X.: Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin. J. Aeronaut. 23, 454–460 (2010)CrossRefGoogle Scholar
  41. 41.
    Hügel, H., Graf, TH.: Laser in der Fertigung, Vieweg + Teubner, Wiesbaden, pp. 378–382 (2009)Google Scholar
  42. 42.
    Ihlemann, J., Scholl, A., Schmidt, H., Wolff-Rottke, B.: Nanosecond and femtosecond excimer laser ablation of fused silica. Appl. Phys. A 54, 363–368 (1992)CrossRefGoogle Scholar
  43. 43.
    Ivarson, A., et al.: The role of oxidation in laser cutting stainless and mild steel. J. Laser Appl. 3, 41–45 (1991)CrossRefGoogle Scholar
  44. 44.
    Ji, G., Grosdidier, T., Bernard, F., Paris, S., Gaffet, E., Launois, S.: Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering. J. Alloy. Compd. 434–435, 358–361 (2007)CrossRefGoogle Scholar
  45. 45.
    Kang, Y.S., Sharma, S.K., Sanders, J.H., Voevodin, A.A.: Finite element analysis of multilayered and functionally gradient tribological coatings with measured material properties. Tribol. Trans. 51(6), 817–828 (2008)CrossRefGoogle Scholar
  46. 46.
    Kaplan, A.F.H.: An analytic model of metal cutting with a laser beam. J. Appl. Phys. A 79, 2198–2208 (1996)Google Scholar
  47. 47.
    Kármán, Th: Festigkeitslehre unter allseitigem Druck. Z. Ver. Dtsch. Ing. 55(42), 1749–1757 (1911)Google Scholar
  48. 48.
    Karnakis, D.M., Knowles, M.R.H., Petkov, P.V., Dobrev, T., Dimov, S.S.: Surface integrity optimisation in ps-laser milling of advanced engineering materials. In: Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing, Munich (2007)Google Scholar
  49. 49.
    Karnakis, D.M., Mortimer, V., Knowles, M.R.H.: Recent advances in ultrafast laser micromachining systems for material micromanufacturing. In: 8th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM & Robotic Performance, Cardiff, Wales (2007)Google Scholar
  50. 50.
    Karnakis, D., Rutterford, G., Knowles, M., Dobrev, T., Petkov, P., Dimov, S.: High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers. Proc. SPIE 6106, 610604 (2006)CrossRefGoogle Scholar
  51. 51.
    Khor, K.A., Dong, Z.L., Gu, Y.W.: Influence of oxide mixtures on mechanical properties of plasma sprayed functionally graded coating. Thin Solid Films 368, 86–92 (2000)CrossRefGoogle Scholar
  52. 52.
    Kieback, B., Neubrand, A., Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362, 81–105 (2003)CrossRefGoogle Scholar
  53. 53.
    Koch, N.: Technologie zum Schleifen asphärischer optischer Linsen. PhD Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Shaker Verlag Aachen (1991)Google Scholar
  54. 54.
    Kulmburg, A.: The microstructure of tool steels–An overview for the practice. Part I: Classification, systematics and heat treatment of tool steels. Pract. Metallography 35(4), 181–202 (1998)Google Scholar
  55. 55.
    Kusakabe, Y., Ohnishi, H., Takahama, T., Goto, Y., Machida, K.: Conformal deposition on a deep-trenched substrate by MOCVD. Appl. Surf. Sci. 70–71, 763–767 (1993)CrossRefGoogle Scholar
  56. 56.
    Levy, G.N.: The role and future of the laser technology in the additive manufacturing environment. Phys. Procedia. Part A, 5, 65–80 (2010)Google Scholar
  57. 57.
    Lewis, L.J., Perez, D.: Theory and simulation of laser ablation—From basic mechanisms to applications. In: Sugioka, K., Meunier, M., Piqué, A (eds.) Laser Precision Microfabrication.Springer (2010)Google Scholar
  58. 58.
    Li, L., Kim, J.H., Shukor, M.H.: Grit blast assisted laser milling/grooving of metallic alloys. CIRP Ann. Manuf. Technol. 54, 183–186 (2005)CrossRefGoogle Scholar
  59. 59.
    Lumley, R.M.: Controlled separation of brittle materials using a laser. Am. Ceram. Soc. Bull. 48, 850–854 (1969)Google Scholar
  60. 60.
    Marshall, D.B., Lawn, B.R., Cook, R.F.: Microstructural effects on grinding of alumina and glass-ceramics. Commun. Am. Ceram. Soc. 70(6), 139–140 (1987)CrossRefGoogle Scholar
  61. 61.
    Masuzawa, T., Tönshoff, H.K.: Three-dimensional micromachining by machine tools. CIRP Ann. Manuf. Technol. 46(2), 621–628 (1997)CrossRefGoogle Scholar
  62. 62.
    Mattox, D.: Physical vapor deposition (PVD) processes. Met. Finish. 93, 387–400 (1995)CrossRefGoogle Scholar
  63. 63.
    Mattox, D.: Handbook of physical vapor deposition (PVD) processing. Elsevier (2010) ISBN: 9780815520375Google Scholar
  64. 64.
    Mehrafsun, S., Zhang, P., Vollertsen, F., Goch, G.: Laser-chemical precision machining of micro forming tools at low laser powers. SPIE LASE 2012 laser-based micro- and nanopackaging and assembly, vol. 6, SPIE 8244-19 (CD-Rom) (2012)Google Scholar
  65. 65.
    Meiners, W.: Direktes Selektives Laser Sintern einkomponentiger metallischer. Werkstoffe PhDthesis RWTH Aachen(1999)Google Scholar
  66. 66.
    Miyashita, M. (ed.): 1st annual precision engineering conference, North Carolina State University, Raleigh, NC, USA (1985)Google Scholar
  67. 67.
    Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins deutscher Ingenieure 24 (1900) 1524–1530 and 1572–1577Google Scholar
  68. 68.
    Musil, J., Fiala, J.: Plasma spray deposition of graded metal-ceramic coatings. Surf. Coat. Technol. 52, 211–220 (1992)CrossRefGoogle Scholar
  69. 69.
    Nowak, R., Metev, S.: Thermochemical laser etching of stainless steel and titanium in liquids. Appl. Phys. A 63, 133–138 (1996)CrossRefGoogle Scholar
  70. 70.
    Nüsser, C., Wehrmann, I., Willenborg, E.: Influence of intensity distribution and pulse duration on laser micro polishing. Phys. Procedia. 12, 462–471 (2011)CrossRefGoogle Scholar
  71. 71.
    Osborn, J: Die fast, live long. AMS September/October 2003, www.automotivemanufacturingsolutions.com
  72. 72.
    Panjan, P., Cekada, M., Panjan, M., Kek-Merl, D.: Growth defects in PVD hard coatings. Vacuum 84, 209–214 (2010)CrossRefGoogle Scholar
  73. 73.
    Panjan, P., Cekada, M., Panjan, M., Kek-Merl, D., Zupani, F., Curkovi, L., Paskvale, S.: Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum 86, 794–798 (2012)CrossRefGoogle Scholar
  74. 74.
    Paul, E., Evans, C.J., Mangamelli, A., McGlauflin, M.L., Polvani, R.S.: Chemical aspects of tool wear in single point diamond turning. Precis. Eng. 18, 4–19 (1996)CrossRefGoogle Scholar
  75. 75.
    Petkov, P.V., Scholz, S., Dimov, S.: Strategies for material removal in laser milling. Proceedings of 4M2008 International Conference on Multi-Material Micro Manufacture, Cardiff, UK (2008)Google Scholar
  76. 76.
    Poech, M.H., Fischmeister, H., Spiegler, R.: Deformation and fracture of two-phase materials. In: Tenckhoff, E., Vöhringer, O. (eds.) Microstructure and Mechanical Properties of Materials. DGM Informationsgesellschaft-Verlag, Oberursel (1990)Google Scholar
  77. 77.
    Polini, R., Mantini, F.P., Braic, M., Amar, M., Ahmed, W., Taylor, H.: Effects of Ti- and Zr-based interlayer coatings on the hot filament chemical vapour deposition of diamond on high speed steel. Thin Solid Films 494, 116–122 (2006)CrossRefGoogle Scholar
  78. 78.
    Qi, L., Nishii, K., Yasui, M., Aoki, H., Namba, Y.: Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation. Opt. Lasers Eng. 48, 1000–1007 (2010)CrossRefGoogle Scholar
  79. 79.
    Rajaram, N., Sheikh-Ahmad, J., Cheraghi, S.H.: CO2 laser cut quality of 4130 steel. Int. J. Mach. Tools Manuf. 43, 351–358 (2003)CrossRefGoogle Scholar
  80. 80.
    Ready, J.F.: Industrial Applications of Lasers, 2nd edn. Elsevier Academic Press, NY (1997)Google Scholar
  81. 81.
    Renevier, N.M., Hamphire, J., Fox, V.C., Witts, J., Allen, T., Teer, D.G.: Advantages of using self-lubricating, hard, wear-resistant MoS -based coatings. Surf. Coat. Technol. 142–144, 67–77 (2001)CrossRefGoogle Scholar
  82. 82.
    Rombouts, M.: Selective laser sintering/melting of iron-based powders. PhD thesis Katholieke Universiteit Leuven (2006)Google Scholar
  83. 83.
    Saeki, M., Kuriyagawa, T., Lee, J.S., Syoji, K.: Machining of aspherical opto-device parallel grinding method. In: ASPE 16th Annual Meeting, vol. 25, pp. 433–436 (2001)Google Scholar
  84. 84.
    Schneider, R., Schulz, A., Bertrand, C., Kulmburg, A., Oldewurtel, A., Uhlenwinkel, V., Viale, D.: The performance of spray formed tool steels in comparison to conventional route material. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The Use of Tool Steels: Experience and research, vol. 2, Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, 10–13 September 2002, Karlstad University (2002) 943–959Google Scholar
  85. 85.
    Schneiders, T., Berns, H., Theisen, W.: Neue Werkzeugwerkstoffe aus Pulvermischungen HTM. J Heat Treatm. Mater. 60(3), 112–123 (2005)Google Scholar
  86. 86.
    Schruff, I., Schüler, V., Spiegelhauer, C.: Advanced tool steels produced via spray forming. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The Use of Tool Steels: Experience and Research, vol. 2. Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, Sep 10–13 2002, Karlstad University (2002), pp. 1159–1179Google Scholar
  87. 87.
    Schulz, A., Uhlenwinkel, V., Bertrand, C., Kohlmann, R., Kulmburg, A., Oldewurtel, A., Schneider, R., Viale, D.: Nitrogen pick-up during spray forming of high alloyed steels and its influence on microstructure and properties of the final products. In: Proceedings of the 2nd International Conference on Spray Deposition and Melt Atomization (SDMA 2003) and 5th International Conference on Spray Forming (ICSF V), 22–25 June 2003, Bremen, Germany, (2003) 4-33–4-45Google Scholar
  88. 88.
    Schulz, A., Uhlenwinkel, V., Bertrand, C., Escher, C., Kohlmann, R., Kulmburg, A., Montero-Pascual, M.C., Rabitsch, R., Schneider, R., Stocchi, D., Viale, D.: Sprühkompaktierte hochlegierte Werkzeugstähle—Herstellung und Eigenschaften. HTM Z.Werkst. Wärmebeh. Fertigung, 60, 2 (2005) S. 87–95Google Scholar
  89. 89.
    Schwander, M., Partes, K.: A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011)CrossRefGoogle Scholar
  90. 90.
    Sinhoff, V.R.: Feinbearbeitung optischer Gläser in der Kleinserie. PhD Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Shaker Verlag Aachen (1997)Google Scholar
  91. 91.
    Spiegelhauer, C.: Industrial production of tool steels using the spray forming technology. In: Bergström J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The use of tool steels: Experience and research, vol. 2. Proceedings of the 6th International Tooling Conference, pp. 1101–1109, Karlstad, Sweden, 10–13 Sep 2002, Karlstad University (2002)Google Scholar
  92. 92.
    Steffens, H.-D., Lebküchner-Neugebauer, J., Dvorak, M., Dammer, R.: Mechanical and technological properties of vacuum plasma sprayed and hot isostatically pressed composite materials. Materialwiss. Werkstofftech. 22, 468–472 (1991)CrossRefGoogle Scholar
  93. 93.
    Stein, C., Keunecke, M., Bewilogua, K., Chudoba, T., Kölker, W., Van den Berg, W.: Cubic boron nitride based coating systems with different interlayers for cutting inserts. Surf. Coat. Technol. 205, 103–106 (2011)CrossRefGoogle Scholar
  94. 94.
    Stephen, A., Vollertsen, F.: 3D microstructuring of mold inserts by laser-based removal. In: Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Löhe, D., Haußelt, J. (eds.) Advanced Micro and Nanosystems, Microengineering of Metals and Ceramics, vol. 3, pp. 132–159. Wiley-VCH, Weinheim (2005)Google Scholar
  95. 95.
    Stephen, A.; Walther, R.; Vollertsen, F.:Removal rate model for laser chemical micro etching. Lasers in Manufacturing LiM, Munich (2009) 615-619Google Scholar
  96. 96.
    Stephen, A., Vollertsen, F.: Mechanisms and processing limits in laser thermochemical machining. Ann. CIRP 59(1), 251–254 (2010)CrossRefGoogle Scholar
  97. 97.
    Sun, S., Pugh, M.: Interfacial properties in steel–steel composite materials. Mater. Sci. Eng. A 318, 320–327 (2001)CrossRefGoogle Scholar
  98. 98.
    Suttmann, O., Moalem, A., Kling, R., Ostendorf, A.: Drilling, cutting, welding, marking and microforming. In: Sugioka, K., Meunier, M., Piqué, A. (eds.) Laser Precision Microfabrication, Springer (2010)Google Scholar
  99. 99.
    Theiler, C., Seefeld, T., Sepold, G.: Deposition of graded metal matrix composites by laser beam cladding laser assisted net shape engineering (LANE’01). In: Geiger, M., Otto, A. (eds.) Meisenbach–Verlag Bamberg, pp. 421–429 (2001)Google Scholar
  100. 100.
    Theisen, W.: HIP cladding of tools. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E (eds.) The use of tool steels: Experience and research, vol. 2, Proceedings of the 6th International Tooling Conference, pp. 947–960, Karlstad, Sweden, 10–13 Sep 2002, Karlstad University (2002)Google Scholar
  101. 101.
    Tohme, Y.E.: Grinding aspheric and freeform micro-optical molds. Proc. SPIE 6462, 64620K (2007)CrossRefGoogle Scholar
  102. 102.
    Tsai, C.-H., Chen, H.-W.: Laser milling of cavity in ceramic substrate by fracture-machining element technique. J. Mater. Process. Technol. 136, 158–165 (2003)CrossRefGoogle Scholar
  103. 103.
    Tsai, C.-H., Chen, H.-W.: The laser shaping of ceramic by a fracture machining technique. Int. J. Adv. Manuf. Technol. 23, 342–349 (2004)CrossRefGoogle Scholar
  104. 104.
    Twardy, S., Riemer, O., Brinksmeier, E.: Tribology of micro milled surfaces. Key engineering materials. Adv. Precis. Eng. 447–448, 681–684 (2010)Google Scholar
  105. 105.
    Uhlenwinkel, V., Schulz, A., Zoch, H.W.: Presentation at the “FAT Forum Nano Auto”, Frankfurt a.M, 28 Nov 2007Google Scholar
  106. 106.
    Uhlmann, E., Schauer, E.: Dynamic load and strain analysis for the optimization of micro end mills. CIRP Ann. Manuf. Technol. 54, 75–78 (2005)CrossRefGoogle Scholar
  107. 107.
    Vollertsen, F., Partes, K., Schubnov, A.: Thin nanocrystalline diamond films deposited by LaPlas-CVD at atmospheric pressure. Prod. Eng. Res. Dev. 4, 9–14 (2010)CrossRefGoogle Scholar
  108. 108.
    Wahlroos, J.M., Liimatainen, T.P.: Interface adherence of spray formed compound tube. In: Proceedings of the 2nd International Conference on Spray Forming, pp. 225–234, 13–15 Sep 1993, Swansea, UK, Woodhead Publishing Limited (1993)Google Scholar
  109. 109.
    Wang, R., Fichtborn, K.A.: Computer simulation of metal thin-film epitaxy. Thin Solid Films 272, 223–228 (1996)CrossRefGoogle Scholar
  110. 110.
    Yadroitsev, I., Smurov, I.: Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys. Procedia. 5, 551–560 (2010)CrossRefGoogle Scholar
  111. 111.
    Yang, Y., Hannula, S.-P.: Development of precision spray forming for rapid tooling. Mater. Sci. Eng. A 477, 63–68 (2008)CrossRefGoogle Scholar
  112. 112.
    Zaeh, M.F., Branner, G.: Investigations on residual stresses and deformations selective laser melting. Prod. Eng. Res. Devel. 4, 35–45 (2010)CrossRefGoogle Scholar
  113. 113.
    Zhang, H., Wang, G., Luo, Y., Nakaga, T.: Rapid hard tooling by plasma spraying for injection molding and sheet metal forming. Thin Solid Films 390, 7–12 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Precision MachiningBremenGermany

Personalised recommendations