Size Effect-Enabled Methods

  • Heinz-Rolf Stock
Part of the Lecture Notes in Production Engineering book series (LNPE)


Micro metal forming requires rather thin parts as the wrought material. Typical thicknesses for sheets are in the range of 10–50 µm. Such sheets can be produced by cold rolling. Common materials, which can be rolled down to such low thicknesses, are for example aluminum (Al99.5), low carbon steel, stainless steel or copper (E58). These materials are available in large quantities at moderate prices. Aluminum foil is for example not only used for the packaging of food but also for thermal insulation, cables and electronics. These materials are work hardened during the cold rolling process and are annealed afterwards to recover their original material properties. All these materials mentioned are rather soft and pliable. This diminishes their potential as construction materials for micro parts.


Physical Vapor Deposition Artificial Ageing Punch Force Target Power Material Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Heat capacity (J/(kg K))


Diameter (mm)


Surface energy (J)


Force (N)


Yield stress (MPa)


Length (mm)


Power (W)


Heat (J)


Latent heat (J/kg)


Radius (mm)


Time (s)


Temperature [°C (K)]


Deposition temperature [°C (K)]


Melting temperature [°C (K)]


Upset ratio (-)


Velocity (mm/s)


Volume (m³)



Absorption coefficient (-)


Surface tension (N/m)


Efficiency (-)


Amplitude (-)


Divergence angle (°)


Wavelength (m)


Density (kg/m³)


Focus diameter (mm)


Tensile strength (MPa)


Nominal stress (MPa)


Natural strain (-)


  1. 1.
    American Society for Metals: ASM Handbook: Heat Treating. vol. 4, pp. 866 (1991)Google Scholar
  2. 2.
    Barna, P.B., Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27–33 (1998)CrossRefGoogle Scholar
  3. 3.
    Bergmann, L., Schaefer, C.: Lehrbuch der Experimentalphysik Band 1 Mechani Relativität Wärme. Gruyter, Berlin (1998)Google Scholar
  4. 4.
    Beyer, E.: Schweißen mit dem Laser: Grundlagen (Laser in Technik und Forschung). Springer, Berlin (1995)CrossRefGoogle Scholar
  5. 5.
    Brüning, H., Vollertsen, F.: Formability of micro material preforms generated by laser melting. In: Hinduja, S., Li L. (eds.) Proceedings of the 37th International MATADOR Conference, pp. 373–376. Springer, London (2012)Google Scholar
  6. 6.
    Bull, S.J.: Correlation of microstructure and properties of hard coatings. Vacuum 43, 387–391 (1992)CrossRefGoogle Scholar
  7. 7.
    Chapman, B.: Glow Discharge Processes. Wiley, New York (1980)Google Scholar
  8. 8.
    Demura, M., Kishida, K., Suga, Y., Takanashi, M., Hirano, T.: Fabrication of thin Ni3Al foils by cold rolling. Scripta Mater. 47, 267–272 (2002)CrossRefGoogle Scholar
  9. 9.
    Doege, E., Behrens, B.-A.: Handbuch Umformtechnik. Springer, Berlin (2007)Google Scholar
  10. 10.
    Ilschner, B., Singer, R.F.: Werkstoffwissenschaften und Fertigungstechnik. Springer, Berlin (2001)Google Scholar
  11. 11.
    Kelly, P.J., Arnell, R.D.: Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J. Vac. Sci. Technol. A 16, 2858–2869 (1998)CrossRefGoogle Scholar
  12. 12.
    Lange, K.: Umformtechnik: Band 2: Massivumformung. Springer, Berlin (1988)Google Scholar
  13. 13.
    Messier, R., Giri, A.P., Roy, R.A.: Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984)CrossRefGoogle Scholar
  14. 14.
    Meßner, A.: Kaltmassivumformung metallischer Kleinstteile: Werkstoffverhalten, Wirkflächenreibung, Prozessauslegung. Meisenbach, Bamberg (1998)Google Scholar
  15. 15.
    Movchan, B.A., Demchishin, A.V.: Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Fiz. Met. i Metallovedeniye 28, 653–660 (1969)Google Scholar
  16. 16.
    Poprawe, R.: Lasertechnik für die Fertigung. Springer, Berlin (2005)Google Scholar
  17. 17.
    Royset, J., Ryum, N.: Scandium in aluminium alloys. Intern Mater. Rev. 50, 19–44 (2005)CrossRefGoogle Scholar
  18. 18.
    Sproul, W.D., Christie, D.J., Carter, D.C., Tomasel, F., Linz, T.: Pulsed plasmas for sputtering applications. Surf. Eng. 20, 174–176 (2004)CrossRefGoogle Scholar
  19. 19.
    Thornton, J.A.: Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J. Vac. Sci. Technol. A 12, 830–835 (1975)CrossRefGoogle Scholar
  20. 20.
    Vollertsen, F.: Size effects in Micro Forming (2011). In: 14th International conference on sheet metal (2011). Key engineering materials, vol. 473, pp. 3–12 (2010)Google Scholar
  21. 21.
    Vollertsen, F., Walther, R.: Energy balance in laser-based free form heading. Ann CIRP 57, 291–294 (2008)CrossRefGoogle Scholar
  22. 22.
    Walther, R., Zverev, M., Vollertsen, F. Enhanced Model for Energy balance in laser based free form heading (2008). In: 1st International Conference on Nanomanufacturing (nanoMan2008)Google Scholar
  23. 23.
    Weißbach, W.: Werkstoffkunde Strukturen Eigenschaften Prüfung. Vieweg & Teubner, Wiesbaden (2010)Google Scholar
  24. 24.
    Yu, H.-L., Liu, X.-H., Lee, G.-T., Park, H.-D.: Numerical analysis of strip edge drop for Sendzimir mill. J. Mater. Process. Technol. 208, 42–52 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IWTBremenGermany

Personalised recommendations