Micro Metal Forming pp 49-101 | Cite as
Mechanical Properties
Abstract
The plastic behavior of metals depends strongly on microstructural features such as dislocations, grain boundaries or precipitations. Some of these microstructural features show size effects depending not only on the size of the feature, but also on the size of the specimen.
Keywords
Flow Stress Stress Amplitude Endurance Limit Solution Annealing Martensitic MicrostructureLatin
- A
Area (mm²)
- AG
Grain area (mm²)
- bv
Absolute value of the Burger’s vector (nm)
- Cth
Thermal material resistance (MPa)
- CDF
Cumulative distribution function
- CDFe
Cumulative distribution function of the endurance limit
- cfa
Concentration of foreign atoms (at.%)
- d
Diameter (mm)
- dG
Grain diameter (mm)
- E
Young’s modulus (GPa)
- fDebye
Debye frequency (s−1)
- F
Force (N)
- G
Shear modulus (GPa)
- GBR
Grain boundary resistance \( {MPa\sqrt{mm}} \)
- GFE
Gibbs free enthalpy (J)
- HM
Martens hardness (MPa)
- K
Prefactor (MPa s)
- KB
Boltzmann constant (J/K)
- Kf
Fatigue notch factor
- Kt
Stress concentration factor
- l
Length (mm)
- L
Gliding path (nm)
- \( \bar{\textit{L}} \)
Mean distance between short-range obstacles (nm)
- mth nth
Exponents
- mf
Strain rate sensitivity
- mof
Orientation factor
- mSachs
Sachs’ factor
- mTaylor
Taylor’s factor
- mWeibull
Shape parameter
- N
Number of cycles
- Nf
Number of cycles to failure
- Pr
Probability
- Prf
Probability of failure
- Q
Activation energy (kJ/(mol K))
- R
Gas constant (kJ/mol)
- Rσ
Stress ratio
- Ra
Arithmetic roughness (µm)
- Rt
Maximum height of profile parameter (µm)
- Ry
Maximum peak to valley height (µm)
- Rz
10-point height parameter (µm)
- s
Sheet thickness/layer thickness/material thickness (µm)
- t
Drop-down time (s)
- T
Temperature (K or °C)
- TR
Recrystallisation temperature (K)
- TM
Melting temperature (K)
- tD
Delay time of a glide dislocation in front of an obstacle (s)
- tL
Running time of a glide dislocation (s)
Greek
- α
Heat transfer coefficient (W/(m² K))
- αSG
Amount of surface grains
- γi
Shear of the ith slip system (MPa)
- ε
Strain
- \( \dot{\varepsilon } \)
Strain rate (s−1)
- εfr
Elongation after fracture
- εg
Elongation at maximum load
- θ
Volume fraction of the border grains
- Φ%
Thickness reduction due to cold forming (%)
- ρdis
Dislocation density (1/m3)
- ρgd
Gliding dislocation density (1/m3)
- σ
Normal stress (MPa)
- σ0
Scale parameter of the endurance limit
- σa
Stress amplitude
- σe
endurance limit
- σe0
endurance limit of a smooth specimen
- σen
endurance limit of a notched specimen
- σmax
Maximum stress
- σM
Ultimate tensile strength (MPa)
- σN
Apparent stress (MPa)
- σN,en
Nominal endurance limit of a notched specimen (MPa)
- σpl
Yield strength/elastic limit (MPa)
- σpl0.2
0.2 %-yield strength (MPa)
- τ
Transverse strain (MPa)
- τN
Overall shear (MPa)
- τSC
Single crystal critical resolved shear stress (MPa)
- φ
Logarithmic degree of deformation [= ln (l/l0)]
References
- 1.Akiniwa, Y., Suzuki, T., Tanaka, K.: Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method. Mater. Sci. Forum 524–525, 807–812 (2006)CrossRefGoogle Scholar
- 2.Armstrong, R.W.: On size effects in polycrystal plasticity. J. Mech. Phys. Solids 9, 196–199 (1961)CrossRefGoogle Scholar
- 3.Boller, C., Seeger, T.: Materials data for cyclic load, Part A: Unalloyed steels. Elsevier, Amsterdam (1987)Google Scholar
- 4.Bradley, D., Kay, L.: Optimizing fatigue resistance of medical wire. Medical Device Technology, 7(15), 10–11 (2004)Google Scholar
- 5.Brunklaus, J.H., Stepanek, F.J.: Industrieöfen—Bau und betrieb. Vulkan-Verlag, Essen (1994)Google Scholar
- 6.Conolly, T., McHugh, P.E., Bruzzi, M.: A review of deformation and fatigue of metals at small size scales. Fatigue Fract. Eng. Mater. Struct. 28, 1119–1152 (2005)CrossRefGoogle Scholar
- 7.Coquillet, B., Vicent, L., Guiraldenq, P.: Influence of cold working on fatigue behavior of stainless steels used for prothesis: application to the study of wires with small sections. J. Biomed. Mater. Res. 13, 657–668 (1979)CrossRefGoogle Scholar
- 8.Eckstein, H.-J.: Wärmebehandlung von Stahl—Metallkundliche Grundlagen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1969)Google Scholar
- 9.Fast, J.D.: Interaction of Metals and Gases. Philips Technical Library, Eindhoven (1965)Google Scholar
- 10.Fujiwara, S., Abiko, K.: Ductility of ultra high purity copper. J. Phys. IV 5, 295–300 (1995)Google Scholar
- 11.Geers, M.G.D., Brekelmans, W.A.M., Janssen, P.J.M.: Size effects in minitiaturized polycrystalline FCC samples. Int. J. Solids Struct. 43, 7304–7321 (2006)MATHCrossRefGoogle Scholar
- 12.Geiger, M., Engel, U., Vollertsen, F., Kals, R., Meßner, A.: Metal forming of micro parts for electronics. Prod. Eng. Res. Devel. II(1), 15–18 (1994)Google Scholar
- 13.Gottstein, G.: Physikalische Grundlagen der Materialkunde. Springer, Berlin (1998)CrossRefGoogle Scholar
- 14.Grey, H., Higgins, G.T.: Solute limited grain boundary migration: A rationalization of grain growth. Acta Metall. 21, 309–321 (1973)CrossRefGoogle Scholar
- 15.Hall, E.O.: The deformation of ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 67, 747 (1951)CrossRefGoogle Scholar
- 16.Herzig, N., Meyer, L.W.: Material characterization at high strain rates with special emphasis on miniaturization and size dependencies. In: Kleiner M., Tekkaya E. (eds.) Proceedings of the International Conference on High Speed Forming (2nd ICHSF), Dortmund, pp 13–22. (2006)Google Scholar
- 17.Hildebrand, L.B., Schmidt, J.A., Prentice, J.K., Stotts, L.J.: Quantitative, low cycle, crack initiation fatigue testing of fine wires and CENELEC standard pacing coil. J. Biomed. Mater. Res. 48, 251–257 (1999)CrossRefGoogle Scholar
- 18.Hong, S., Hoffmann, H.: Study of scaling effect on mechanical properties for milli-forming of sheet metal—Tensile test of a very thin sheet. 1st Colloquium Process scaling, BIAS Verlag, Bremen, pp 145–151. (2003)Google Scholar
- 19.Hutchison, M.M.: The temperature dependence of the yield stress of polycrystalline iron. Phil. Mag. 85(8), 121–127 (1963)CrossRefGoogle Scholar
- 20.Janssen, P.J.M., de Keijseer, ThH, Geers, M.G.D.: An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng., A 419, 238–248 (2006)CrossRefGoogle Scholar
- 21.Judelevic, M., Künzi, H.U., Merk, N., Ilschner, B.: Microstructural development of copper foils 20–100 μm thick. Mater. Sci. Eng. A186, 135–142 (1994)Google Scholar
- 22.Kals, R., Vollertsen, F., Geiger, M.: Scaling effects in sheet metal forming. In: Kals H.J.J., Shirvani B., Singh U.P., Geiger M. (eds.) 4th International Conference on Sheet Metal, pp 65–75. University of Twenty Enschede, Enschede (1996)Google Scholar
- 23.Kammer, C.: Aluminium Taschenbuch Band 1. Aluminium-Verlag, Düsseldorf (2002)Google Scholar
- 24.Keßler, O.: Precipitation hardening of aluminum alloys. Heat Treat. Mark. 3, 5–8 (2001)Google Scholar
- 25.Khatibi, G., Betzwar-Kotas, A., Gröger, V., Weiss, B.: A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract. Eng. Mater. Struct. 28, 723–733 (2005)CrossRefGoogle Scholar
- 26.Kim, G.-Y., Koc, M., Ni, J.: Modeling of the size effects on the behavior of metals in microscale deformation processes. J. Manuf. Sci. Eng. 129, 470–476 (2007)CrossRefGoogle Scholar
- 27.Klein, M., Hadrboletz, A., Weiss, B., Khatibi, G.: The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater. Sci. Eng. A319–321, 924–928 (2001)Google Scholar
- 28.Kloos, K.H.: Einfluß des Oberflächenzustandes und der Probengröße auf die Schwingfestigkeitseigenschaften. VDI-Bericht 268, VDI-Verlag, Düsseldorf (1976)Google Scholar
- 29.Köhler, B., Bomas, H., Hunkel, M., Lütjens, J., Zoch, H.-W.: Yield strength behaviour of carbon steel microsheets after cold forming and after annealing. Scr. Mater. 62, 548–551 (2010)CrossRefGoogle Scholar
- 30.Krebs, J.P.: Turboumwälzung der Atmosphäre in Förderband-Durchlauföfen für die Wärmebehandlung von Massenteilen. Blech Rohre Profile 36, 734–737 (1989)Google Scholar
- 31.Liscic, B., Tensi, H.M., Luty, W.: Theory and Technology of Quenching. Springer, Berlin (1992)CrossRefGoogle Scholar
- 32.Macherauch, E., Zoch, H.-W.: Praktikum in Werkstoffkunde. Vieweg+Teubner, Wiesbaden (2011)CrossRefGoogle Scholar
- 33.Macherauch, E., Vöhringer, O.: Das Verhalten metallischer Werkstoffe unter mechanischer Beanspruchung. Zeitschrift für Werkstofftechnik 9, 370–391 (1978)CrossRefGoogle Scholar
- 34.Marrey, R.V., Burgermeister, R., Grishaber, R.B., Ritchie, R.O.: Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis. Biomaterials 27, 1988–2000 (2006)CrossRefGoogle Scholar
- 35.Mayer, V.A. (ed.): ASTM dictionary of engineering science and technology, p. 694. ASTM International, West Conshohocken (2005)Google Scholar
- 36.Meßner, A., Engel, U., Kals, R., Vollertsen, F.: Size effect in the FE-simulation of micro-forming processes. J. Mater. Process. Technol. 45, 371–376 (1994)CrossRefGoogle Scholar
- 37.Meßner, A., Engel, U.: Das Werkstoffverhalten beim Umformen von Kleinteilen. Draht 1, 30–35 (1997)Google Scholar
- 38.Miller, K.J., O’Donnell, W.J.: The fatigue limit and its elimination. Fatigue Fract. Eng. Mater. Struct. 22, 545–557 (1999)CrossRefGoogle Scholar
- 39.Mullins, W.W.: The effect of thermal grooving on grain boundary motion. Acta Metall. 6, 414–427 (1958)CrossRefGoogle Scholar
- 40.Nicholas, T.: High Cycle Fatigue. Elsevier, Amsterdam (2006)Google Scholar
- 41.Novovic, D., Dewes, R.C., Aspinwall, D.K., Voice, W., Bowen, P.: The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tool. Manuf. 44, 125–134 (2004)Google Scholar
- 42.Ostermann, F.: Anwendungstechnologie Aluminium. Springer, Berlin (2007)Google Scholar
- 43.Sachs, G.: Zur Ableitung einer Fließbedingung. Z. Ver. Dtsch. Ing. 72, 734–736 (1928)Google Scholar
- 44.Stölken, J.S., Evans, A.G.: A microbend method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRefGoogle Scholar
- 45.Stratton, P.: Gas quenching small components. Proc. 14th IFHTSE Congr. Trans. Mater. Heat Treat. 25(5), 494–497 (2004)Google Scholar
- 46.Suzuki, K., Matsuki, Y., Masaki, K., Sato, M., Kuroda, M.: Tensile and microbend tests of pure aluminum foils with different thicknesses. Mater. Sci. Eng., A 513–514, 77–82 (2009)Google Scholar
- 47.Takashima, K., Higo, Y.: Fatigue and fracture of a Ni–P amorphous alloy thin film on the micrometer scale. Fatigue Fract. Eng. Mater. Struct. 28, 703–710 (2005)CrossRefGoogle Scholar
- 48.Taylor, G.I.: Strain in crystalline aggregates. Proceedings of the Colloquium on Deformation and Flow of Solids, Madrid, 1955, pp 3–12. Springer, Berlin (1956)Google Scholar
- 49.Thompson, C.V.: Grain growth in thin films. Ann. Rev. Mater. Sci. 20, 245–268 (1990)CrossRefGoogle Scholar
- 50.Vollertsen, F.: Categories of size effects. Prod. Eng. Res. Dev. 2(4), 377–383 (2008)CrossRefGoogle Scholar
- 51.Vollertsen, F., Biermann, D., Hansen, H.N., Jawahir, I.S., Kuzman, K.: Size effects in manufacturing of metallic components. CIRP Ann. Manufact. Technol. 58(2), 566–587 (2009)CrossRefGoogle Scholar
- 52.Walter, J.L., Dunn, C.G.: Tertiary recrystallization in silicon iron. Trans. AIME 215, 465–471 (1959)Google Scholar
- 53.Weiss, B., Gröger, V., Khatibi, G., Kotas, A., Zimprich, P., Stickler, R., Zagar, B.: Characterization of mechanical and thermal properties of thin Cu foils and wires. Sens. Actuators, A 99, 172–182 (2002)CrossRefGoogle Scholar
- 54.Xiang, Y., Vlassak, J.J.: Bauschinger effect in thin metal films. Scr. Mater. 53, 177–182 (2005)CrossRefGoogle Scholar
- 55.Zaefferer, S., Chan, N.: The Goss texture formation in silicon steels—growth selection or oriented nucleation? Solid State Phenom. 105, 29–36 (2005)CrossRefGoogle Scholar
- 56.Zhang, J., Zhang, K., Wu, H., Yu, M.: Experimental and numerical investigation on pure aluminum by ECAP. Trans. Nonferrous Met. Soc. China 19, 1303–1311 (2009)CrossRefGoogle Scholar