Mechanical Properties

  • Hans-Werner Zoch
Part of the Lecture Notes in Production Engineering book series (LNPE)


The plastic behavior of metals depends strongly on microstructural features such as dislocations, grain boundaries or precipitations. Some of these microstructural features show size effects depending not only on the size of the feature, but also on the size of the specimen.


Flow Stress Stress Amplitude Endurance Limit Solution Annealing Martensitic Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Area (mm²)


Grain area (mm²)


Absolute value of the Burger’s vector (nm)


Thermal material resistance (MPa)


Cumulative distribution function


Cumulative distribution function of the endurance limit


Concentration of foreign atoms (at.%)


Diameter (mm)


Grain diameter (mm)


Young’s modulus (GPa)


Debye frequency (s−1)


Force (N)


Shear modulus (GPa)


Grain boundary resistance \( {MPa\sqrt{mm}} \)


Gibbs free enthalpy (J)


Martens hardness (MPa)


Prefactor (MPa s)


Boltzmann constant (J/K)


Fatigue notch factor


Stress concentration factor


Length (mm)


Gliding path (nm)

\( \bar{\textit{L}} \)

Mean distance between short-range obstacles (nm)

mth nth



Strain rate sensitivity


Orientation factor


Sachs’ factor


Taylor’s factor


Shape parameter


Number of cycles


Number of cycles to failure




Probability of failure


Activation energy (kJ/(mol K))


Gas constant (kJ/mol)


Stress ratio


Arithmetic roughness (µm)


Maximum height of profile parameter (µm)


Maximum peak to valley height (µm)


10-point height parameter (µm)


Sheet thickness/layer thickness/material thickness (µm)


Drop-down time (s)


Temperature (K or °C)


Recrystallisation temperature (K)


Melting temperature (K)


Delay time of a glide dislocation in front of an obstacle (s)


Running time of a glide dislocation (s)



Heat transfer coefficient (W/(m² K))


Amount of surface grains


Shear of the ith slip system (MPa)



\( \dot{\varepsilon } \)

Strain rate (s−1)


Elongation after fracture


Elongation at maximum load


Volume fraction of the border grains


Thickness reduction due to cold forming (%)


Dislocation density (1/m3)


Gliding dislocation density (1/m3)


Normal stress (MPa)


Scale parameter of the endurance limit


Stress amplitude


endurance limit


endurance limit of a smooth specimen


endurance limit of a notched specimen


Maximum stress


Ultimate tensile strength (MPa)


Apparent stress (MPa)


Nominal endurance limit of a notched specimen (MPa)


Yield strength/elastic limit (MPa)


0.2 %-yield strength (MPa)


Transverse strain (MPa)


Overall shear (MPa)


Single crystal critical resolved shear stress (MPa)


Logarithmic degree of deformation [= ln (l/l0)]


  1. 1.
    Akiniwa, Y., Suzuki, T., Tanaka, K.: Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method. Mater. Sci. Forum 524–525, 807–812 (2006)CrossRefGoogle Scholar
  2. 2.
    Armstrong, R.W.: On size effects in polycrystal plasticity. J. Mech. Phys. Solids 9, 196–199 (1961)CrossRefGoogle Scholar
  3. 3.
    Boller, C., Seeger, T.: Materials data for cyclic load, Part A: Unalloyed steels. Elsevier, Amsterdam (1987)Google Scholar
  4. 4.
    Bradley, D., Kay, L.: Optimizing fatigue resistance of medical wire. Medical Device Technology, 7(15), 10–11 (2004)Google Scholar
  5. 5.
    Brunklaus, J.H., Stepanek, F.J.: Industrieöfen—Bau und betrieb. Vulkan-Verlag, Essen (1994)Google Scholar
  6. 6.
    Conolly, T., McHugh, P.E., Bruzzi, M.: A review of deformation and fatigue of metals at small size scales. Fatigue Fract. Eng. Mater. Struct. 28, 1119–1152 (2005)CrossRefGoogle Scholar
  7. 7.
    Coquillet, B., Vicent, L., Guiraldenq, P.: Influence of cold working on fatigue behavior of stainless steels used for prothesis: application to the study of wires with small sections. J. Biomed. Mater. Res. 13, 657–668 (1979)CrossRefGoogle Scholar
  8. 8.
    Eckstein, H.-J.: Wärmebehandlung von Stahl—Metallkundliche Grundlagen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1969)Google Scholar
  9. 9.
    Fast, J.D.: Interaction of Metals and Gases. Philips Technical Library, Eindhoven (1965)Google Scholar
  10. 10.
    Fujiwara, S., Abiko, K.: Ductility of ultra high purity copper. J. Phys. IV 5, 295–300 (1995)Google Scholar
  11. 11.
    Geers, M.G.D., Brekelmans, W.A.M., Janssen, P.J.M.: Size effects in minitiaturized polycrystalline FCC samples. Int. J. Solids Struct. 43, 7304–7321 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Geiger, M., Engel, U., Vollertsen, F., Kals, R., Meßner, A.: Metal forming of micro parts for electronics. Prod. Eng. Res. Devel. II(1), 15–18 (1994)Google Scholar
  13. 13.
    Gottstein, G.: Physikalische Grundlagen der Materialkunde. Springer, Berlin (1998)CrossRefGoogle Scholar
  14. 14.
    Grey, H., Higgins, G.T.: Solute limited grain boundary migration: A rationalization of grain growth. Acta Metall. 21, 309–321 (1973)CrossRefGoogle Scholar
  15. 15.
    Hall, E.O.: The deformation of ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 67, 747 (1951)CrossRefGoogle Scholar
  16. 16.
    Herzig, N., Meyer, L.W.: Material characterization at high strain rates with special emphasis on miniaturization and size dependencies. In: Kleiner M., Tekkaya E. (eds.) Proceedings of the International Conference on High Speed Forming (2nd ICHSF), Dortmund, pp 13–22. (2006)Google Scholar
  17. 17.
    Hildebrand, L.B., Schmidt, J.A., Prentice, J.K., Stotts, L.J.: Quantitative, low cycle, crack initiation fatigue testing of fine wires and CENELEC standard pacing coil. J. Biomed. Mater. Res. 48, 251–257 (1999)CrossRefGoogle Scholar
  18. 18.
    Hong, S., Hoffmann, H.: Study of scaling effect on mechanical properties for milli-forming of sheet metal—Tensile test of a very thin sheet. 1st Colloquium Process scaling, BIAS Verlag, Bremen, pp 145–151. (2003)Google Scholar
  19. 19.
    Hutchison, M.M.: The temperature dependence of the yield stress of polycrystalline iron. Phil. Mag. 85(8), 121–127 (1963)CrossRefGoogle Scholar
  20. 20.
    Janssen, P.J.M., de Keijseer, ThH, Geers, M.G.D.: An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng., A 419, 238–248 (2006)CrossRefGoogle Scholar
  21. 21.
    Judelevic, M., Künzi, H.U., Merk, N., Ilschner, B.: Microstructural development of copper foils 20–100 μm thick. Mater. Sci. Eng. A186, 135–142 (1994)Google Scholar
  22. 22.
    Kals, R., Vollertsen, F., Geiger, M.: Scaling effects in sheet metal forming. In: Kals H.J.J., Shirvani B., Singh U.P., Geiger M. (eds.) 4th International Conference on Sheet Metal, pp 65–75. University of Twenty Enschede, Enschede (1996)Google Scholar
  23. 23.
    Kammer, C.: Aluminium Taschenbuch Band 1. Aluminium-Verlag, Düsseldorf (2002)Google Scholar
  24. 24.
    Keßler, O.: Precipitation hardening of aluminum alloys. Heat Treat. Mark. 3, 5–8 (2001)Google Scholar
  25. 25.
    Khatibi, G., Betzwar-Kotas, A., Gröger, V., Weiss, B.: A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract. Eng. Mater. Struct. 28, 723–733 (2005)CrossRefGoogle Scholar
  26. 26.
    Kim, G.-Y., Koc, M., Ni, J.: Modeling of the size effects on the behavior of metals in microscale deformation processes. J. Manuf. Sci. Eng. 129, 470–476 (2007)CrossRefGoogle Scholar
  27. 27.
    Klein, M., Hadrboletz, A., Weiss, B., Khatibi, G.: The ‘size effect’ on the stress–strain, fatigue and fracture properties of thin metallic foils. Mater. Sci. Eng. A319–321, 924–928 (2001)Google Scholar
  28. 28.
    Kloos, K.H.: Einfluß des Oberflächenzustandes und der Probengröße auf die Schwingfestigkeitseigenschaften. VDI-Bericht 268, VDI-Verlag, Düsseldorf (1976)Google Scholar
  29. 29.
    Köhler, B., Bomas, H., Hunkel, M., Lütjens, J., Zoch, H.-W.: Yield strength behaviour of carbon steel microsheets after cold forming and after annealing. Scr. Mater. 62, 548–551 (2010)CrossRefGoogle Scholar
  30. 30.
    Krebs, J.P.: Turboumwälzung der Atmosphäre in Förderband-Durchlauföfen für die Wärmebehandlung von Massenteilen. Blech Rohre Profile 36, 734–737 (1989)Google Scholar
  31. 31.
    Liscic, B., Tensi, H.M., Luty, W.: Theory and Technology of Quenching. Springer, Berlin (1992)CrossRefGoogle Scholar
  32. 32.
    Macherauch, E., Zoch, H.-W.: Praktikum in Werkstoffkunde. Vieweg+Teubner, Wiesbaden (2011)CrossRefGoogle Scholar
  33. 33.
    Macherauch, E., Vöhringer, O.: Das Verhalten metallischer Werkstoffe unter mechanischer Beanspruchung. Zeitschrift für Werkstofftechnik 9, 370–391 (1978)CrossRefGoogle Scholar
  34. 34.
    Marrey, R.V., Burgermeister, R., Grishaber, R.B., Ritchie, R.O.: Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis. Biomaterials 27, 1988–2000 (2006)CrossRefGoogle Scholar
  35. 35.
    Mayer, V.A. (ed.): ASTM dictionary of engineering science and technology, p. 694. ASTM International, West Conshohocken (2005)Google Scholar
  36. 36.
    Meßner, A., Engel, U., Kals, R., Vollertsen, F.: Size effect in the FE-simulation of micro-forming processes. J. Mater. Process. Technol. 45, 371–376 (1994)CrossRefGoogle Scholar
  37. 37.
    Meßner, A., Engel, U.: Das Werkstoffverhalten beim Umformen von Kleinteilen. Draht 1, 30–35 (1997)Google Scholar
  38. 38.
    Miller, K.J., O’Donnell, W.J.: The fatigue limit and its elimination. Fatigue Fract. Eng. Mater. Struct. 22, 545–557 (1999)CrossRefGoogle Scholar
  39. 39.
    Mullins, W.W.: The effect of thermal grooving on grain boundary motion. Acta Metall. 6, 414–427 (1958)CrossRefGoogle Scholar
  40. 40.
    Nicholas, T.: High Cycle Fatigue. Elsevier, Amsterdam (2006)Google Scholar
  41. 41.
    Novovic, D., Dewes, R.C., Aspinwall, D.K., Voice, W., Bowen, P.: The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tool. Manuf. 44, 125–134 (2004)Google Scholar
  42. 42.
    Ostermann, F.: Anwendungstechnologie Aluminium. Springer, Berlin (2007)Google Scholar
  43. 43.
    Sachs, G.: Zur Ableitung einer Fließbedingung. Z. Ver. Dtsch. Ing. 72, 734–736 (1928)Google Scholar
  44. 44.
    Stölken, J.S., Evans, A.G.: A microbend method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRefGoogle Scholar
  45. 45.
    Stratton, P.: Gas quenching small components. Proc. 14th IFHTSE Congr. Trans. Mater. Heat Treat. 25(5), 494–497 (2004)Google Scholar
  46. 46.
    Suzuki, K., Matsuki, Y., Masaki, K., Sato, M., Kuroda, M.: Tensile and microbend tests of pure aluminum foils with different thicknesses. Mater. Sci. Eng., A 513–514, 77–82 (2009)Google Scholar
  47. 47.
    Takashima, K., Higo, Y.: Fatigue and fracture of a Ni–P amorphous alloy thin film on the micrometer scale. Fatigue Fract. Eng. Mater. Struct. 28, 703–710 (2005)CrossRefGoogle Scholar
  48. 48.
    Taylor, G.I.: Strain in crystalline aggregates. Proceedings of the Colloquium on Deformation and Flow of Solids, Madrid, 1955, pp 3–12. Springer, Berlin (1956)Google Scholar
  49. 49.
    Thompson, C.V.: Grain growth in thin films. Ann. Rev. Mater. Sci. 20, 245–268 (1990)CrossRefGoogle Scholar
  50. 50.
    Vollertsen, F.: Categories of size effects. Prod. Eng. Res. Dev. 2(4), 377–383 (2008)CrossRefGoogle Scholar
  51. 51.
    Vollertsen, F., Biermann, D., Hansen, H.N., Jawahir, I.S., Kuzman, K.: Size effects in manufacturing of metallic components. CIRP Ann. Manufact. Technol. 58(2), 566–587 (2009)CrossRefGoogle Scholar
  52. 52.
    Walter, J.L., Dunn, C.G.: Tertiary recrystallization in silicon iron. Trans. AIME 215, 465–471 (1959)Google Scholar
  53. 53.
    Weiss, B., Gröger, V., Khatibi, G., Kotas, A., Zimprich, P., Stickler, R., Zagar, B.: Characterization of mechanical and thermal properties of thin Cu foils and wires. Sens. Actuators, A 99, 172–182 (2002)CrossRefGoogle Scholar
  54. 54.
    Xiang, Y., Vlassak, J.J.: Bauschinger effect in thin metal films. Scr. Mater. 53, 177–182 (2005)CrossRefGoogle Scholar
  55. 55.
    Zaefferer, S., Chan, N.: The Goss texture formation in silicon steels—growth selection or oriented nucleation? Solid State Phenom. 105, 29–36 (2005)CrossRefGoogle Scholar
  56. 56.
    Zhang, J., Zhang, K., Wu, H., Yu, M.: Experimental and numerical investigation on pure aluminum by ECAP. Trans. Nonferrous Met. Soc. China 19, 1303–1311 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IWTBremenGermany

Personalised recommendations