Quality Aspects

Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Tactile, optical and the growing field of tomographical measurement are widely dominating the inspection of manufactured workpieces, applying a broad variety of measuring devices. These instruments measure the deviations of the specified geometry defined in the design drawings.

Keywords

Process Chain Deep Drawing Quality Control System Process Capability Index Quality Inspection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Latin

a

Orthogonal distance of a line in R2 to the origin (mm)

bactual

Actual deviation (mm)

bspecified

Tolerated deviation (mm)

Cp

Capability index

Cpk

Minimum capability index

CpkLL

Lower capability index

CpkUL

Upper capability index

d

Lateral resolution (mm)

dai

(Orthogonal) Distance of point with index i (mm)

k

Factor k depends upon the type of probability distribution of the output quantity in a measurement model and on the selected coverage probability

LL

Lower limit

n

Refractive index

NA

Numerical aperture

Pr

Corresponding probability

Pc

Cost efficiency evaluation parameter

Pp

Process performance index

Ppk

Minimum process performance index

PpkLL

Lower process performance index

PpkUL

Upper process performance index

Pq

Quality evaluation parameter

Pt

Technological evaluation parameter

QG

L2-norm or gaussian norm (mm)

Qsup

Supremum/Chebychev norm (mm)

r

Radius (mm)

rcircumscribed

Radius of a minimum circumscribed element (mm)

rinscribed

Radius of a maximum inscribed element (mm)

rL2

Radius of a Gaussian element (mm)

rsup

Radius of a chebychev/minimum zone element (mm)

U(x, y)

Complex field amplitude (V/m)

UL

Upper limit

U

Expanded measurement uncertainty

ui

Individual standard measurement uncertainty

u

Coordinate (m)

v

Coordinate (m)

Wc

Cost efficiency weighting factor

Wcc

Costs

Wccm

Manufacturing costs

Wccs

Setup costs

Wcct

Transport costs

Wct

Time

Wctm

Manufacturing time

Wcts

Setup time

Wctt

Transport time

Wq

Quality weighting factor

Wqi

Impacts of quality

Wqip

Impact of process changing

Wqir

Impact of rechecking

Wqm

Quality of manufacturing processes

Wt

Technological weighting factor

Wtr

Resource availability

Wts

Technological sensibility

Xi

Influencing input quantities

XLL

Lower quantil

XUL

Upper quantil

X

Coordinate (m)

xin

n measured data for quantity Xi

\( \bar{x}_{i} \)

Mean value of n measured data for quantity Xi

Y

Model function

y

Coordinate (m)

Greek

α

Half angle of the aperture (°)

β

Angle (around z-axis) (rad)

γ

Tip angle (°)

Δ

Estimator for dispersion

εi

Corresponding expectation value

λ

Wavelength (nm)

η

Coordinate (m)

Λ

Synthetic wavelength (µm)

μ

Estimator for location of distribution

μadd

Estimator for additional fluctuations of the location of distribution

ξ

Coordinate (m)

σemp,i

Empirical standard deviation of the influencing quantity Xi

σemp,y

Combined standard measurement uncertainty for the expectation value y of Y

σi

Standard deviation of the influencing quantity Xi

References

  1. 1.
    Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces. Universität Stuttgart, Dissertation (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Bergmann, R.B., Bessler, F.T., Bauer, W.: Non-Destructive Testing in the Automotive Supply Industry: Proc. ECNDT, Berlin (2006)Google Scholar
  3. 3.
    Bergmann, R.B., Huke, P.: Advanced Methods for Optical Nondestructive Testing. In: Osten, W., Reingand, N. Optical Imaging and Metrology, pp. 393–412. Wiley-VCH, Weinheim (2012)Google Scholar
  4. 4.
    Berndt, G., Hultzsch, E., Weinhold, H.: Funktionstoleranz und Messunsicherheit. Wissenschaftliche Zeitschrift der Technischen Universität Dresden 17(2), 465–471 (1968)Google Scholar
  5. 5.
    Bureau International des Poids et Mesures (BIPM): JCGM 100:2008, Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (2008). Retrieved from www.BIPM.org
  6. 6.
    Bureau International des Poids et Mesures (BIPM): JCGM 200:2008, International Vocabulary of Metrology—Basics and General Concepts and Associated Terms (VIM) (2008). Retrieved from www.BIPM.org
  7. 7.
    Bureau International des Poids et Mesures (BIPM): The International System of Units (SI), 8th edn (2006). Retrieved from www.BIPM.org
  8. 8.
    Cho, M.W., Kim, G.-H., Seo, T.-I., Gong, Y.-C., Cheng, H.-H.: Integrated machining error compensation method using OMM data and modified PNN algorithm. Int. J. Mach. Tools Manuf. 46, 1417–1427 (2006)CrossRefGoogle Scholar
  9. 9.
    Danzl, R, Helmli, F.: Three-dimensional reconstruction of surfaces with steep slopes using an optical measurement system based on a colour focus sensor. In: Proceeding of the 6th Euspen International Conference, pp. 516–519 (2006)Google Scholar
  10. 10.
    Denkena, B., Tönshoff, H.K.: Prozessauslegung und -integration in die Prozesskette. Spanen-Grundlagen. Springer, Berlin (2011). doi: 10.1007/978-3-642-19772-7
  11. 11.
    Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C.M., Wepf, R., Bunk, O., Pfeiffer, F.: Ptychographic x-ray computed tomography at the nanoscale. Nature 467, 436–440 (2010)CrossRefGoogle Scholar
  12. 12.
    Dijkman, M., Goch, G.: Distortion compensation strategies in the production process of bearing rings. International Conference on Distortion Engineering (IDE), pp. 227–234 (2008)Google Scholar
  13. 13.
    Dorf, R.C., Bishop R.H.: Modern Control Systems. Pearson Education, pp. 227–234 (2011). ISBN:978-0-13-138310-4Google Scholar
  14. 14.
    Dresel, T., Häusler, G.l., Venske, H.: Threedimensional sensing of rough surfaces by coherence radar. Appl. Opt. 31(7), 919–925 (1992)CrossRefGoogle Scholar
  15. 15.
    Falldorf, C., Heimbach, Y., von Kopylow, C., Jüptner, W.: Efficient reconstruction of spatially limited phase distributions from their sheared representation. Appl. Opt. 46(22), 5038–5043 (2007)CrossRefGoogle Scholar
  16. 16.
    Filippi, S., Cristofolini, I.: The Design Guidelines Collaborative Framework. Springer, London (2010). doi: 10.1007/978-1-84882-772-1
  17. 17.
    Fleischer, J., Buchholz, I., Peters, J., Viering, B., Goch, G., Patzelt, S., Tausendfreund, A., Mehner, J., Dötzel, W., Shaporin, A., Neuschaefer-Rube, U., Hilpert, U., Simon, S., Tutsch, R., Herbst, C., Weckenmann, A., Hoffmann, J., Krämer, P.: Erfassung von Standardgeometrieelementen im Mikrometerbereich: Herausforderungen und Lösungsansätze. TM. Tech. Mess. 75(5), 327–338 (2008)CrossRefGoogle Scholar
  18. 18.
    Forbes, A.B.: Least-squares best-fit geometric elements. Technical Report NPL Report DICT 140/89 (1989)Google Scholar
  19. 19.
    Gauß, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Perthes Verlag, Hamburg (1809)Google Scholar
  20. 20.
    Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., Engel, U.: Microforming. CIRP Ann.—Manuf. Technol. 50(2), 445–462 (2001)CrossRefGoogle Scholar
  21. 21.
    Goch, G.: Gear metrology. CIRP Ann.—Manuf. Technol. 52(2), 659–695 (2003)CrossRefGoogle Scholar
  22. 22.
    Goch, G., Dijkman, M.: Holonic quality control strategy for the process chain of bearing rings. CIRP Ann.—Manuf. Technol. 58(1), 433–436 (2009)CrossRefGoogle Scholar
  23. 23.
    Hansen, H.N., Carneiro, K., Haitjema, H., De Chiffre, L.: Dimensional micro and nano technology. Ann. CIRP 55(2), 721–734 (2006)CrossRefGoogle Scholar
  24. 24.
    Häusler, G., Leuchs, G.: Physikalische Grenzen der optischen Formerfassung mit Licht. Phys. Bl. 53(5), 417–422 (1997)CrossRefGoogle Scholar
  25. 25.
    Häusler, G., Richter, C., Leitz, K.-H., Knauer, M.C.: Microdeflectometry—a novel tool to acquire three-dimensional microtopography with nanometer height resolution. Opt. Lett. 33(4), 396–398 (2008)CrossRefGoogle Scholar
  26. 26.
    Hoffmann, J.: Tastsysteme für die Mikro- und Nanomesstechnik Nanometeraufgelöste Oberflächenerfassung. In: tm—Technisches Messen 75(5), 311–317 (2008)Google Scholar
  27. 27.
    Jurklies, I.: Generierung und Bewertung von Prozessketten für den Werkzeug- und Formenbau. Shaker Verlag, Aachen, Germany (2004)Google Scholar
  28. 28.
    Kreis, T.: Handbook of Holographic Interferometry. Wiley-VCH, Weinheim (2005)Google Scholar
  29. 29.
    Lindner, M. W.: White-light interferometry via an endoscope. In: Creath, K., Schmit, J. (eds.) SPIE. 4777, Nr. 1: Interferometry XI: Techniques and Analysis, pp. 90–101 (2002)Google Scholar
  30. 30.
    Malacara, D., Malacara, Z.: Handbook of Optical Design, 2nd edn. Marcel Dekker, Inc., New York (2004)Google Scholar
  31. 31.
    Mittag, H.J.: Qualitätsregelkarten. Carl Hanser Verlag, München (1993). ISBN 978-3446176616Google Scholar
  32. 32.
    Montgomery, D.C.: Introduction to Statistical Quality Control 6th edn. Wiley, New York (2008). ISBN:978-0470169926Google Scholar
  33. 33.
    Nelles, O.: Nonlinear System Identification, pp. 239–269. Springer, Berlin (2001). ISBN:3-540-6736-5Google Scholar
  34. 34.
    Neuschaefer-Rube, U., Neugebauer, M., Ehrig, W., Bartscher, M., Hilpert, U.: Tactile and optical microsensors: test procedures and standards. In: Measurement Science and Technology 19, Nr. 8, S. 084010, p. 5 (2008)Google Scholar
  35. 35.
    NORM ISO 14253: Geometrical Product Specification (GPS)—Inspection by Measurement of Workpieces and Measuring Equipment, Part 1–Part 4 (1998–2011)Google Scholar
  36. 36.
    NORM ISO 21747: Statistical Methods—Process Performance and Capability Statistics for Measured Quality Characteristics (2006)Google Scholar
  37. 37.
    Ojala, T., Pietikäinen, M., Harwook, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  38. 38.
    Pfeifer, T.: Production Metrology. Oldenbourg Wissenschaftsverlag, München (2002). ISBN 3486258850Google Scholar
  39. 39.
    Pfeifer, T.: Quality management—strategies, methods, techniques, pp. 143–150. Carl Hanser, Munich (2002). ISBN:3-446-22003-8Google Scholar
  40. 40.
    Savio, E., De Chiffre, L., Schmitt, R.: Metrology of freeform shaped parts. CIRP Ann.—Manuf. Technol. 56(2), 810–835 (2007)CrossRefGoogle Scholar
  41. 41.
    Schnars, U., Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33(2), 179–181 (1994)CrossRefGoogle Scholar
  42. 42.
    Scholz-Reiter, B., Lütjen, M., Brenner, N.: Technologieinduzierte Wirkungszusammenhänge in der Mikroproduktion—Entwicklung eines Modellierungskonzepts. In: Schenk, M. (ed.) 22. HAB-Forschungsseminar: Digital Engineering—Herausforderung für die Arbeits- und Betriebsorganisation, October, pp. 81–102. GITO Verlag, Magdeburg (2009)Google Scholar
  43. 43.
    Scholz-Reiter, B., Weimer, D., Thamer, H.: Automated surface inspection of cold-formed micro-parts. Ann. CIRP 61(1), 531–534 (2012)CrossRefGoogle Scholar
  44. 44.
    Seebacher, S., Osten, W., Jüptner, W.: Measuring shape and deformation of small objects using digital holography. In: Pryputniewicz, R., Brown, G., Jüptner, W. (eds.) Laser Interferometry IX, Proc SPIE 3479, pp. 104–115 (1998)Google Scholar
  45. 45.
    Servin, M., Cywiak, M., Davila, A.: Extreme shearing interferometry: Theoretical limits with practical consequences. Opt. Express 15(26), 17805–17818 (2007)CrossRefGoogle Scholar
  46. 46.
    Simoncelli, E.P.; Freeman, W.T.: The steerable pyramid: A flexible architecture for multi-scale derivative computation. In: International Conference on Image Processing, pp. 444–447 (1995)Google Scholar
  47. 47.
    Spur, G.; Stöferle, T.: Handbuch der Fertigungstechnik, vol. 2–3. Hanser, Munich (1983). ISBN:978-3-446-12533-9Google Scholar
  48. 48.
    Stöbener, D., Goch, G.: In-process measurements of wall thickness deviations during turning. Materialwiss. Werkstofftech. 40(5-6), 420–425 (2009)CrossRefGoogle Scholar
  49. 49.
    Tong, C., Sriram, D.: Artificial Intelligence in Engineering Design: Design representation and models of routine design. Academic Press Professional, San Diego (1992)MATHGoogle Scholar
  50. 50.
    Weck, M., Eversheim, W., König, W., Pfeifer, T.: Die Realisierung von Qualitätsregelkreisen—zentrales Moment der integrierten Qualitätssicherung. In: Wettbewerbsfaktor Produktionstechnik. VDI-Verlag, Düsseldorf (1990)Google Scholar
  51. 51.
    Weckenmann, A., Estler, T., Peggs, G., McMurtry, D.: Probing systems in dimensional metrology. CIRP Ann.—Manuf. Technol. 53(2), 657–684 (2004)CrossRefGoogle Scholar
  52. 52.
    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)CrossRefGoogle Scholar
  53. 53.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Zhang, P., Mehrafsun, S., Lübke, K., Goch, G., Vollertsen, F.: Laserchemische Feinbearbeitung und Qualitätsprüfung von Mikrokaltumform-Werkzeugen. Kolloquium Mikroproduktion, Karlsruhe (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bremer Institut für angewandte StrahltechnikBremenGermany

Personalised recommendations