Bocchieri, E.: Vector quantization for efficient computation of continuous density likelihoods. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. 2, Minneapolis, Minnesota, USA, pp. 692–695 (1993)
Google Scholar
Cerisara, C., Demange, S., Haton, J.P.: On noise masking for automatic missing data speech recognition: A survey and discussion. Comput. Speech Lang. 21 (3), 443–457 (2007)
CrossRef
Google Scholar
Cooke, M., Green, P., Crawford, M.: Handling missing data in speech recognition. In: Proceedings of the International Conference on Spoken Language Processing, Yokohama, Japan, pp. 1555–1558 (1994)
Google Scholar
Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34 (3), 267–285 (2001)
CrossRef
Google Scholar
Demuynck, K., Duchateau, J., Compernolle, D.V.: Optimal feature sub-space selection based on discriminant analysis. In: Proceedings of the European Conference on Speech Communication and Technology, vol. 3, Budapest, Hungary, pp. 1311–1314 (1999)
Google Scholar
Demuynck, K., Duchateau, J., Van Compernolle, D.: Reduced semi-continuous models for large vocabulary continuous speech recognition in Dutch. In: Proc. the International Conference on Spoken Language Processing, vol. IV, Philadelphia, USA, pp. 2289–2292 (1996)
Google Scholar
Demuynck, K., Zhang, X., Van Compernolle, D., Van hamme, H.: Feature versus model based noise robustness. In: Proc. INTERSPEECH, Makuhari, Japan, pp. 721–724 (2010)
Google Scholar
Gemmeke, J.F.: Noise robust ASR: missing data techniques and beyond. Ph.D. Thesis, Radboud Universiteit Nijmegen, The Netherlands (2011)
Google Scholar
Gemmeke, J.F., Cranen, B.: Noise reduction through compressed sensing. In: Proceedings of the INTERSPEECH, Brisbane, Australia, pp. 1785–1788 (2008)
Google Scholar
Gemmeke, J.F., Cranen, B.: Missing data imputation using compressive sensing techniques for connected digit recognition. In: Proceedings of the International Conference on Digital Signal Processing, Santorini, Greece, pp. 1–8 (2009)
Google Scholar
Gemmeke, J.F., Cranen, B.: Sparse imputation for noise robust speech recognition using soft masks. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, pp. 4645–4648 (2009)
Google Scholar
Gemmeke, J.F., Cranen, B., Remes, U.: Sparse imputation for large vocabulary noise robust ASR. Comput. Speech Lang. 25 (2), 462–479 (2011)
CrossRef
Google Scholar
Gemmeke, J.F., Hurmalainen, A., Virtanen, T., Sun, Y.: Toward a practical implementation of exemplar-based noise robust ASR. In: Proceedings of the EUSIPCO, Barcelona, Spain, pp. 1490–1494 (2011)
Google Scholar
Gemmeke, J.F., Remes, U., Palomäki, K.J.: Observation uncertainty measures for sparse imputation. In: Proceedings of the Interspeech, Makuhari, Japan, pp. 2262–2265 (2010)
Google Scholar
Gemmeke, J.F., Van hamme, H., Cranen, B., Boves, L.: Compressive sensing for missing data imputation in noise robust speech recognition. IEEE J Sel. Top. Signal Process. 4 (2), 272–287 (2010)
CrossRef
Google Scholar
Gemmeke, J.F., Van Segbroeck, M., Wang, Y., Cranen, B., Van hamme, H.: Automatic speech recognition using missing data techniques: handling of real-world data. In: Kolossa, D., Haeb-Umbach R. (eds.) Robust Speech Recognition of Uncertain or Missing Data, pp. 157–185. Springer Verlag, Berlin-Heidelberg (Germany) (2011)
CrossRef
Google Scholar
Gemmeke, J.F., Virtanen, T., Hurmalainen, A.: Exemplar-based sparse representations for noise robust automatic speech recognition. IEEE Trans. Audio Speech Lang. process. 19 (7), 2067–2080 (2011)
CrossRef
Google Scholar
Hirsch, H., Pearce, D.: The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions. In: Proceedings of the ISCA Tutorial and Research Workshop ASR2000, Paris, France, pp. 181–188 (2000)
Google Scholar
Hirsimäki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., Pylkkönen, J.: Unlimited vocabulary speech recognition with morph language models applied to Finnish. Comput. Speech Lang. 20 (4), 515–541 (2006)
CrossRef
Google Scholar
Hurmalainen, A., Mahkonen, K., Gemmeke, J.F., Virtanen, T.: Exemplar-based recognition of speech in highly variable noise. In: International Workshop on Machine Listening in Multisource Environments, Florence, Italy (2011)
Google Scholar
Iskra, D., Grosskopf, B., Marasek, K., van den Heuvel, H., Diehl, F., Kiessling, A.: Speecon – speech databases for consumer devices: Database specification and validation. In: Proceedings of the of LREC, Las Palmas, Spain, pp. 329–333 (2002)
Google Scholar
Josifovski, L., Cooke, M., Green, P., Vizinho, A.: State based imputation of missing data for robust speech recognition and speech enhancement. In: Proceedings of the EUROSPEECH, Budapest, Hungary, pp. 2837–2840 (1999)
Google Scholar
Kallasjoki, H., Keronen, S., Brown, G.J., Gemmeke, J.F., Remes, U., Palomäki, K.J.: Mask estimation and sparse imputation for missing data speech recognition in multisource reverberant environments. In: International Workshop on Machine Listening in Multisource Environments, Florence, Italy (2011)
Google Scholar
Martin, R.: Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 9, 504–512 (2001)
CrossRef
Google Scholar
Palomäki, K.J., Brown, G.J., Barker, J.: Techniques for handling convolutional distortion with “missing data” automatic speech recognition. Speech Commun. 43, 123–142 (2004)
CrossRef
Google Scholar
Raj, B., Seltzer, M.L., Stern, R.M.: Reconstruction of missing features for robust speech recognition. Speech Commun. 43 (4), 275–296 (2004)
CrossRef
Google Scholar
Raj, B., Stern, R.M.: Missing-feature approaches in speech recognition. IEEE Signal Process. Mag. 22 (5), 101–116 (2005)
CrossRef
Google Scholar
Remes, U., Palomäki, K.J., Kurimo, M.: Missing feature reconstruction and acoustic model adaptation combined for large vocabulary continuous speech recognition. In: Proceedings of the EUSIPCO, Lausanne, Switzerland (2008)
Google Scholar
Tan, Q.F., Georgiou, P.G., Narayanan, S.S.: Enhanced sparse imputation techniques for a robust speech recognition front-end. IEEE Trans Audio Speech Lang. Process. 19 (8), 2418–2429 (2011)
CrossRef
Google Scholar
van den Heuvel, H., Boudy, J., Comeyne, R., Communications, M.N.: The speechdat-car multilingual speech databases for in-car applications. In: Proceedings of the European Conference on Speech Communication and Technology, Budapest, Hungary, pp. 2279–2282 (1999)
Google Scholar
Van hamme, H.: Robust speech recognition using missing feature theory in the cepstral or LDA domain. In: Proceedings of the EUROSPEECH, Geneva, Switzerland, pp. 3089–3092 (2003)
Google Scholar
Van hamme, H.: PROSPECT features and their application to missing data techniques for robust speech recognition. In: Proceedings of the INTERSPEECH, Jeju Island, Korea, pp. 101–104 (2004)
Google Scholar
Van hamme, H.: Robust speech recognition using cepstral domain missing data techniques and noisy masks. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Montreal, Quebec, Canada, pp. 213–216 (2004)
Google Scholar
Van hamme, H.: Handling time-derivative features in a missing data framework for robust automatic speech recognition. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Toulouse, France (2006)
Google Scholar
Van Segbroeck, M., Van hamme, H.: Handling convolutional noise in missing data automatic speech recognition. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, pp. 2562–2565 (2006)
Google Scholar
Van Segbroeck, M., Van hamme, H.: Vector-Quantization based mask estimation for missing data automatic speech recognition. In: Proceedings of the INTERSPEECH, Antwerp, Belgium, pp. 910–913. (2007)
Google Scholar
Varga, A., Steeneken, H.: Assessment for automatic speech recognition: II. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems. Speech Commun. 12 (3), 247–51 (1993)
CrossRef
Google Scholar
Wang, Y.,Van hamme, H.: Multi-candidate missing data imputation for robust speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, No. 17, doi:10.1186/1687-4722-2012-17, May 2012