Advertisement

Preliminaries

  • Mahmoud H. Annaby
  • Zeinab S. Mansour
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2056)

Abstract

This chapter includes definitions and properties of Jackson q-difference and q-integral operators, q-gamma and q-beta functions and finally q-analogues of Laplace and Mellin integral transforms.

Keywords

Entire Function Wright Function Straightforward Manipulation Symmetric Rule Fundamental Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.I. Abdel-Gawad, A.A. Aldailami, On q-dynamic equations modelling and complexity. Appl. Math. Model. 34(3), 697–709 (2010)Google Scholar
  2. 2.
    T. Abdeljawad, D. Baleanu, Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Comm. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011)Google Scholar
  3. 3.
    W.H. Abdi, On q-Laplace transforms. Proc. Natl. Acad. Sci. India (Sect. A) 29, 389–408 (1960)Google Scholar
  4. 4.
    W.H. Abdi, Application of q-Laplace transform to the solution of certain q-integral equations. Rend. Circ. Mat. Palermo 11(2), 245–257 (1962)Google Scholar
  5. 5.
    W.H. Abdi, On certain q-difference equations and q-Laplace transforms. Proc. Natl. Acad. Sc. India A 28, 1–15 (1962)Google Scholar
  6. 6.
    W.H. Abdi, Certain inversion and representation formulae for q-Laplace transforms. Math. Z. 83, 238–249 (1964)Google Scholar
  7. 7.
    L.D. Abreu, A q-sampling theorem related to the q-Hankel transform. Proc. Am. Math. Soc. 133, 1197–1203 (2005)Google Scholar
  8. 8.
    L.D. Abreu, Sampling theory associated with q-difference equations of the Sturm-Liouville type. J. Phys. A 38(48), 10311–10319 (2005)Google Scholar
  9. 9.
    L.D. Abreu, J. Bustoz, J.L. Caradoso, The roots of the third Jackson q-Bessel functions. Int. J. Math. Math. Sci. 2003(67), 4241–4248 (2003)Google Scholar
  10. 10.
    M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail, Z.S. Mansour, Linear q-difference equations. Z. Anal. Anwend. 26(4), 481–494 (2007)Google Scholar
  11. 11.
    C.R. Adams, Note on the existence of analytic solutions of non-homogeneous linear q-difference equations, ordinary and partial. Ann. Math. 27(2), 73–83 (1925)Google Scholar
  12. 12.
    C.R. Adams, Note on the existence of analytic solutions of non-homogeneous linear q-difference equations, ordinary and partial. Ann. Math. (2) 30(1–4), 626 (1928/1929)Google Scholar
  13. 13.
    C.R. Adams, On the linear ordinary q-difference equation. Ann. Math. (2) 30(1–4), 195–205 (1928/1929)Google Scholar
  14. 14.
    M. Adivar, M. Bohner, Spectral analysis of q-difference equations with spectral singularities. Math. Comput. Modell. 43(7–8), 695–703 (2006)Google Scholar
  15. 15.
    R.P. Agarwal, Fractional q-derivative and q-integrals and certain hypergeometric transformations. Ganita 27(1–2), 25–32 (1976)Google Scholar
  16. 16.
    R.P. Agarwal, A propos d’une note de M. Pierre Humbert (French). C. R. Acad. Sci. Paris 236, 2031–2032 (1953)Google Scholar
  17. 17.
    R.P. Agarwal, Certain fractional q-integrals and q-derivatives. Proc. Camb. Phil. Soc. 66, 365–370 (1969)Google Scholar
  18. 18.
    W.A. Al-Salam, q-analogues of Cauchy’s formulas. Proc. Am. Math. Soc. 17, 616–621 (1966)Google Scholar
  19. 19.
    W.A. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 2(15), 135–140 (1966/1967)Google Scholar
  20. 20.
    W.A. Al-Salam, A. Verma, A fractional Leibniz q-formula. Pac. J. Math. 60(2), 1–9 (1975)Google Scholar
  21. 21.
    T.S. Aleroev, On the problem of the zeros of the Mittag-Leffler function and the spectrum of a fractional-order differential operator. Differ. Equat. 36(9), 1414–1415 (2000). Translation from Differ. Uravn. 36(9), 1278–1279 (2000)Google Scholar
  22. 22.
    T.S. Aleroev, H.T. Aleroeva, A problem on the zeros of the Mittag–Leffler function and the spectrum of a fractional-order differential operator. Electron. J. Qual. Theor. Differ. Equat. 2009(25), 18 (2009)Google Scholar
  23. 23.
    A. Algin, A comparative study on q-deformed fermion oscillators. Int. J. Theor. Phys. 50(5), 1554–1568 (2011)Google Scholar
  24. 24.
    G.E. Andrews, The Theory of Partitions, vol. 2 of Encyclopedia of Mathematics and Applications (Addison-Wesley, London, 1976)Google Scholar
  25. 25.
    G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)Google Scholar
  26. 26.
    M.H. Annaby, q-type sampling theorems. Result. Math. 44(3–4), 214–225 (2003)Google Scholar
  27. 27.
    M.H. Annaby, J. Bustoz, M.E.H. Ismail, On sampling theory and basic Sturm–Liouville systems. J. Comput. Appl. Math. 206(1), 73–85 (2007)Google Scholar
  28. 28.
    M.H. Annaby, P.L. Butzer, Sampling in Paley-Wiener spaces associated with fractional integro-differential operators. J. Comput. Appl. Math. 171(1–2), 39–57 (2004)Google Scholar
  29. 29.
    M.H. Annaby, H.A. Hassan, Z.S. Mansour, Sampling theorems associated with singular q-Sturm Liouville problems. doi:10.1007/s00025-011-0134-9Google Scholar
  30. 30.
    M.H. Annaby, Z.S. Mansour, Basic Sturm Liouville problems. J. Phys. A Math. Gen. 38(17), 3775–3797 (2005). Corrigendum, J. Phys. A Math. Gen. 39(27), 8747 (2006)Google Scholar
  31. 31.
    M.H. Annaby, Z.S. Mansour, On the zeros of basic finite Hankel transforms. J. Math. Anal. Appl. 323(2), 1091–1103 (2006)Google Scholar
  32. 32.
    M.H. Annaby, Z.S. Mansour, A basic analog of a theorem of Pólya. Math. Z. 258(2), 363–379 (2008)Google Scholar
  33. 33.
    M.H. Annaby, Z.S. Mansour, q-Taylor and interpolation series for Jackson q-difference operators. J. Math. Anal. Appl. 334(1), 472–483 (2008)Google Scholar
  34. 34.
    M.H. Annaby, Z.S. Mansour, On zeros of second and third Jackson q-Bessel functions and their q-integral transforms. Math. Proc. Camb. Philos. Soc. 147(1), 47–67 (2009)Google Scholar
  35. 35.
    M.H. Annaby, Z.S. Mansour, Asymptotic formulae for eigenvalues and eigenfunctions of q-Sturm-Liouville problems. Math. Nachr. 284(4), 443–470 (2011)Google Scholar
  36. 36.
    M.H. Annaby, Z.S. Mansour, O.A. Ashour, Sampling theorems associated with biorthogonal q-Bessel functions. J. Phys. A Math. Theor. 43(29), 15 (2010)Google Scholar
  37. 37.
    M.H. Annaby, Z.S. Mansour, I.A. Soliman, q − titchmarsh-weyl theory: Series expansion. Nagoya Math. J. 205, 67–118 (2012)Google Scholar
  38. 38.
    I. Area, E. Godoy, F. Marcellán, J.J. Moreno-Balcázar, Inner products involving q-differences: The little q-Laguerre-Sobolev polynomials. Higher transcendental functions and their applications. J.  Comput. Appl. Math. 118(1–2), 1–22 (2000)Google Scholar
  39. 39.
    I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Hypergeometric type q-difference equations: Rodrigues type representation for the second kind solution. J. Comput. Appl. Math. 173(1), 81–92 (2005)Google Scholar
  40. 40.
    R. Askey, The q-gamma and q-beta functions. Appl. Anal. 8(2), 125–141 (1978/1979)Google Scholar
  41. 41.
    R. Askey, J. Wilson, Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 54(319), iv+55 (1985)Google Scholar
  42. 42.
    N.M. Atakishiyev, On a one-parameter family of q-exponential functions. J. Phys. A Math. Gen. 29(10), L223–L227 (1996)Google Scholar
  43. 43.
    M.K. Atakishiyeva, N.M. Atakishiyev, On continuous q-Hermite polynomials and the classical Fourier transform. J. Phys. A Math. Theor. 41(12), 9 (2008)Google Scholar
  44. 44.
    F. Atici, P. Eloe, Fractional q-calculus on time scale. J. Nonlinear Math. Phys. 14(3), 333–344 (2007)Google Scholar
  45. 45.
    F.V. Atkinson, Discrete and Continuous Boundary Problems, vol. 8 of Mathematics in Science and Engineering (Academic, New York, 1964)Google Scholar
  46. 46.
    B. Aulbach, S. Hilger, A Unified Approach to Continuous and Discrete Dynamics. Qualitative Theory of Differential Equations (Szegad, 1988), vol. 53 of Colloq. Math. Soc. János Bolayi (North-Holland, Amsterdam, 1990), pp. 37–56Google Scholar
  47. 47.
    E.W. Barnes, A new development of the theory of the hypergeometric functions. Proc. Lond. Math. Soc. s2–6(1), 141–177 (1908)Google Scholar
  48. 48.
    D.C. Barnett, R.G. Halburd, W. Morgan, R.J. Korhonen, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations. Proc. R. Soc. Edinb. Sect. A 137(3), 457–474 (2007)Google Scholar
  49. 49.
    M.A. Bassam, Some properties of Holmgren-Riez transform. Ann. Scuola Norm. Sup. Pisa 15(3), 1–24 (1961)Google Scholar
  50. 50.
    M.B. Bekker, M.J. Bohner, A.N. Herega, H. Voulov, Spectral analysis of a q-difference operator. J. Phys. A Math. Theor. 43(14) (2010) pp. 15Google Scholar
  51. 51.
    M.S. Ben Hammouda, A. Nemri, Polynomial expansions for solutions of higher-order q-Bessel heat equation. Tamsui Oxf. J. Math. Sci. 24(2), 153–174 (2008)Google Scholar
  52. 52.
    Y.M. Berezansky, Z.G. Shaftl, G.F. US, Functional Analysis, vol. I (Birkhäuser, Basel, 1996)Google Scholar
  53. 53.
    W. Bergweiler, W.K. Hayman, Zeros of solutions of a functional equation. Comput. Meth. Funct. Theor. 3(1–2), 55–78 (2003)Google Scholar
  54. 54.
    N. Bettaibi, R.H. Bettaieb, q-analogue of the Dunkl transform on the real line. Tamsui Oxf. J. Math. Sci. 26(2), 178–206 (2009)Google Scholar
  55. 55.
    J.P. Bezivin, Sur les équations fonctionelles p-adiques aux q-différences. Collect. Math. 43(2), 125–140 (1992)Google Scholar
  56. 56.
    G.D. Birkhoff, Note on a canonical form for the linear q-difference system. Proc. Natl. Acad. Sci. 27, 218–222 (1941)Google Scholar
  57. 57.
    R.P. Boas, Entire Functions (Academic, New York, 1954)Google Scholar
  58. 58.
    L. Boelen, C. Smet, W. Van Assche, q-discrete painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials. J. Difference Equ. Appl. 16(1), 37–53 (2010)Google Scholar
  59. 59.
    M. Bohner, G. Sh. Guseinov, The convolution on time scales. Abstr. Appl. Anal. (2007). Art. ID 58373 pp. 24Google Scholar
  60. 60.
    M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser, Boston, 2001)Google Scholar
  61. 61.
    M. Bohner, A. Peterson, Laplace transform and z-transform: Unification and extension methods. Appl. Anal. 9(1), 151–157 (2002)Google Scholar
  62. 62.
    F. Bouzeffour, Interpolation of entire functions, product formula for basic sine function. J. Nonlinear Math. Phys. 13(2), 293–301 (2006)Google Scholar
  63. 63.
    F. Bouzeffour, Inversion formulas for q-Riemann-Liouville and q-Weyl transforms. J. Math. Anal. Appl. 336(2), 833–848 (2007)Google Scholar
  64. 64.
    K. Brahim, R. Quanes, Some applications of the q-Mellin transform. Tamsui Oxf. J. Math. Sci. 26(3), 335–343 (2010)Google Scholar
  65. 65.
    T.J.I’A. Bromwich, An Introduction to the Theory of Infinite Series, 1st edn. (Macmillan, London, 1908)Google Scholar
  66. 66.
    J. Bustoz, J.L. Cardoso, Basic analog of Fourier series on a q-linear grid. J. Approx. Theor. 112(1), 134–157 (2001)Google Scholar
  67. 67.
    J. Bustoz, S.K. Suslov, Basic analog of Fourier series on a q-quadratic grid. Meth. Appl. Anal. 5(1), 1–38 (1998)Google Scholar
  68. 68.
    P.L. Butzer, U. Westphal, in An Introduction to Fractional Calculus, Chap. I. Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000), pp. 3–85Google Scholar
  69. 69.
    M. Caputo, Elasticitàe Dissipazione (Zanichelli, Bologna, 1969)Google Scholar
  70. 70.
    M. Caputo, Linear models of dissipation whose Q is almost frequency independent–II. Fract. Calc. Appl. Anal. 11(1), 4–14 (2008). Reprinted from Geophys. J. R. Astron. Soc. 13(5), 529–539 (1976)Google Scholar
  71. 71.
    R.D. Carmichael, The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)Google Scholar
  72. 72.
    R.D. Carmichael, Linear difference equations and their analytic solutions. Trans. Am. Math. Soc. 12(2), 99–134 (1912)Google Scholar
  73. 73.
    R.D. Carmichael, On the theory of linear difference equations. Am. J. Math. 35(2), 163–182 (1913)Google Scholar
  74. 74.
    B.Q. Chen, X.Z. Chen, S. Li, Properties on solutions of some q-difference equations. Acta Math. Sin. (Engl. Ser.) 26(10), 1877–1886 (2010)Google Scholar
  75. 75.
    Y. Chen, M.E.H. Ismail, K.A. Muttalib, Asymptotics of basic Bessel functions and q-Laguerre polynomials. J. Comp. Appl. Math. 54, 263–273 (1994)Google Scholar
  76. 76.
    K. Chung, W. Chung, S. Nam, H. Kang, New q-derivative and q-logarithm. Int. J. Theoret. Phys. 33(10), 2019–2029 (1993)Google Scholar
  77. 77.
    J.A. Cochran, The Analysis of Linear Integral Equations (McGraw Hill, New York, 1972)Google Scholar
  78. 78.
    E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)Google Scholar
  79. 79.
    T. Craven, G. Csordas, The Fox–Wright functions and Laguerre multiplier sequences. J. Math. Anal. Appl. 314(1), 109–125 (2006)Google Scholar
  80. 80.
    A. De Sole, V.G. Kac, On integral representations of q-gamma and q-beta functions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16(1), 11–29 (2005)Google Scholar
  81. 81.
    J.B. Diaz, T.J. Osler, Differences of fractional order. Math. Comp. 28(125), 185–202 (1974)Google Scholar
  82. 82.
    K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes of Mathematics (Springer, Berlin, 2010)Google Scholar
  83. 83.
    K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Meth. Appl. Mech. Eng. 194(6–8), 743–773 (2005)Google Scholar
  84. 84.
    M.M. Djrbashian, Integral Transforms and Representations of Functions in the Complex Domain (Nauka, Moscow, 1962). In RussianGoogle Scholar
  85. 85.
    M.M. Djrbashian, Harmonic Analysis and Boundary Value Problem in the Complex Domain (Birkhäuser, Basel, 1993)Google Scholar
  86. 86.
    A. Dobrogowska, A. Odzijewicz, Second order q-difference equations solvable by factorization method. J. Comput. Appl. Math. 193(1), 319–346 (2006)Google Scholar
  87. 87.
    A. Dobrogowska, A. Odzijewicz, Solutions of the q-deformed Schrödinger equation for special potentials. J. Phys. A Math. Theor. 40(9), 2023–2036 (2007)Google Scholar
  88. 88.
    M.S.P. Eastham, Theory of Ordinary Differential Equations (Van Nostrand, Reinhold, 1970)Google Scholar
  89. 89.
    A.M.I. El-Guindy, Z.S.I. Mansour, Functional definitions for q-analogues of Eulerian functions and applications. Aquationes Math. DOI:10.1007/s00010-012-0141-2Google Scholar
  90. 90.
    A.M.A. El-Sayed, Fractional order evolution equations. J. Fract. Calc. 7, 89–100 (1995)Google Scholar
  91. 91.
    A.M.A. El-Sayed, Multivalued fractional differential equations. Appl. Math. Comput. 86(1), 15–25 (1995)Google Scholar
  92. 92.
    M. El-Shahed, A. Salem, q-analogue of Wright function. Abstr. Appl. Anal. (2008). Art. ID 962849 pp. 11Google Scholar
  93. 93.
    A. Erdélyi, On some functional transformations. Rend. Sem. Mat. Univ. Politec. Torino 10, 217–234 (1951)Google Scholar
  94. 94.
    A. Erdélyi, H. Kober, Some remarks on Hankel transforms. Quart. J. Math. 11, 212–221 (1940). Oxford SeriesGoogle Scholar
  95. 95.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. III. (McGraw-Hill, New York, 1955)Google Scholar
  96. 96.
    A. Erdélyi, I.N. Sneddon, Fractional integration and dual integral equations. Can. J. Math. 14(4), 685–693 (1962)Google Scholar
  97. 97.
    V.V. Eremin, A.A. Meldianov, The q-deformed harmonic oscillator, coherent states, and the uncertainty relation. Theor. Math. Phys. 147(2), 709–715 (2006). Translation from Teor. Mat. Fiz. 147(2), 315–322 (2006)Google Scholar
  98. 98.
    H. Exton, q-Hypergeometric Functions and Applications (Ellis-Horwood, Chichester, 1983)Google Scholar
  99. 99.
    H. Exton, Basic Sturm-Liouville theory. Rev. Tecn.  Fac.  Ingr.  Univ.  Zulia 1, 85–100 (1992)Google Scholar
  100. 100.
    R.A.C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theor. Differ. Equat. 10(70), 10 (2010)Google Scholar
  101. 101.
    C.M. Field, N. Joshi, F.W. Nijhoff, q-difference equations of KdV type and Chazy-type second-degree difference equations. J. Phys. A Math. Theor. 41(33), 13 (2008)Google Scholar
  102. 102.
    A. Fitouhi, N. Bettaibi, K. Brahim, The Mellin transform in quantum calculus. Constr. Approx. 23(3), 305–323 (2006)Google Scholar
  103. 103.
    A. Fitouhi, A. Safraoui, Paley-Wiener theorem for the q 2-Fourier-Rubin transform. Tamsui Oxf. J. Math. Sci. 26(3), 287–304 (2010)Google Scholar
  104. 104.
    R. Floreanini, J . LeTourneux, L. Vinet, More on the q-oscillator algebra and q-orthogonal polynomials. J. Phys. A Math. Gen. 28, L287–L293 (1995)Google Scholar
  105. 105.
    R. Floreanini, L. Vinet, A model for the continuous q-ultraspherical polynomials. J. Math. Phys. 36, 3800–3813 (1995)Google Scholar
  106. 106.
    R. Floreanini, L. Vinet, More on the q-oscillator algebra and q-orthogonal polynomials. J. Phys. A 28, L287–L293 (1995)Google Scholar
  107. 107.
    M. Foupouagnigni, W. Koepf, A. Ronveaux, Fourth-order difference equation for the associated classical orthogonal polynomials. J. Comput. Appl. Math. 92(2), 103–108 (1998)Google Scholar
  108. 108.
    M. Foupouagnigni, A. Ronveaux, W. Koepf, Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials. J. Comput. Appl. Math. 101(1–2), 231–236 (1999)Google Scholar
  109. 109.
    C. Fox, The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. S2–27(1), 389–400 (1928)Google Scholar
  110. 110.
    M.C. Gaer, L.A. Rubel, in The Fractional Derivative and Entire Functions. Fractional Calculus and Its Applications. Proceedings of International Conference, University of New Haven, West Haven, CT, 1974, vol. 457 of Lecture Notes in Math. (Springer, Berlin, 1975), pp. 171–206Google Scholar
  111. 111.
    Lj. Gajić, B. Stanković, Some properties of Wright’s function. Publ. Inst. Math. (Beograd) (N.S.) 20(34), 91–98 (1976)Google Scholar
  112. 112.
    L. Galué, Generalized Erdélyi-Kober fractional q-integral operator. Kuwait J. Sci. Eng. 36(2A), 21–34 (2009)Google Scholar
  113. 113.
    G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edn. (Cambridge university Press, Cambridge, 2004)Google Scholar
  114. 114.
    R. Gorenflo, A.A. Kilbas, S. Rogozin, On the generalized Mittag-Leffler type functions. Integr. Transforms Spec. Funct. 7(3–4), 215–224 (1998)Google Scholar
  115. 115.
    R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2(4), 383–414 (1999)Google Scholar
  116. 116.
    R. Gorenflo, Yu. Luchko, J. Loutchko, Computation of the Mittag-Leffler function E α, β(z) and its derivative. Frac. Calc. Appl. Anal. 5(4), 491–518 (2002)Google Scholar
  117. 117.
    R. Gorenflo, F. Mainardi, in Fractional Calculus: Integral and Differential Equations of Fractional Order, ed. by A. Carpinteri, F. Mainardi. Fractals and Fractional Calculus in Continuum Mechanics, vol. 378 of CISM Courses and Lecture Notes (Springer, New York, 1997), pp. 223–276Google Scholar
  118. 118.
    R. Gorenflo, S. Vessella, in Abel Integral Equations: Analysis and Applications. Lecture Notes in Mathematics, vol. 1461 (Springer, Berlin, 1991)Google Scholar
  119. 119.
    R.W. Gray, C.A. Nelson, A completeness relation for the q-analogue coherent states by q-integration. J. Phys. A. 23, L945–L950 (1990)Google Scholar
  120. 120.
    A.K. Grünwald, Über begrenzte derivationen und deren anwedung. Z. Math. Phys. 12, 441–480 (1867)Google Scholar
  121. 121.
    I. Győri, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications (Clarendon press, Oxford, 1991)Google Scholar
  122. 122.
    W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-transformation (German). Math. Nachr. 2, 340–379 (1949)Google Scholar
  123. 123.
    W. Hahn, Beiträge zur Theorie der Heineschen Reihen (German). Math. Nachr. 2, 340–379 (1949)Google Scholar
  124. 124.
    W. Hahn, Über die zerlegung einer klasse von polynomen in irreduzible faktoren (German). Math. Nachr. 3, 257–294 (1950)Google Scholar
  125. 125.
    W. Hahn, Über uneigentliche Lösungen linearer geometrischer Differenzengleichungen (German). Math. Ann. 125, 67–81 (1952)Google Scholar
  126. 126.
    J.W. Hanneken, B.N.N. Achar, R. Puzio, D.M. Vaught, Properties of the Mittag-Leffler function for negative alpha. Phys. Scr. T136, 5 (2009)Google Scholar
  127. 127.
    H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 51 (2011)Google Scholar
  128. 128.
    W.K. Hayman, Subharmonic Functions, vol. II (Academic, London, 1989)Google Scholar
  129. 129.
    W.K. Hayman, in On the Zeros of a q-Bessel Function, ed. by M. Agranovsky, L. Karp, D. Shoikhet. Complex Analysis and Dynamical Systems II: A Conference in Honor of Professor Lawrence Zalcman’s Sixtieth Birthday, June 9–12, 2003, vol. 382 of Contemp. Math. (Amer. Math. Soc., Providence, 2005), pp. 205–216Google Scholar
  130. 130.
    E. Heine, Über die reihe... J. Reine Angew. Math. 32, 210–212 (1846)Google Scholar
  131. 131.
    E. Heine, Untersuchngen über die reihe... J. Reine Angew. Math. 34, 285–328 (1847)Google Scholar
  132. 132.
    E. Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, vol. 1 (G. Reimer, Berlin, 1878)Google Scholar
  133. 133.
    E. Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen, vol. 2 (G. Reimer, Berlin, 1881)Google Scholar
  134. 134.
    N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)Google Scholar
  135. 135.
    S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)Google Scholar
  136. 136.
    C.L. Ho, On the use of Mellin transform to a class of q-difference-differential equations. Phys. Lett. A 268(4–6), 217–223 (2000)Google Scholar
  137. 137.
    P. Humbert, R.P. Agarwal, Sur la fonction de Mittag–Leffler et quelques-unes de ses généralisations (French). Bull. Sci. Math. 77(2), 180–185 (1953)Google Scholar
  138. 138.
    A. Huseynov, E. Bairamov, An eigenvalue problem for quadratic pencils of q-difference equations and its applications. Appl. Math. Lett. 22(4), 521–527 (2009)Google Scholar
  139. 139.
    J.I. Hutchinson, On a remarkable class of entire functions. Trans. Am. Math. Soc. 25(3), 325–332 (1923)Google Scholar
  140. 140.
    M.E.H. Ismail, The basic Bessel functions and polynomials. SIAM J. Math. Anal. 12(3), 454–468 (1981)Google Scholar
  141. 141.
    M.E.H. Ismail, The zeros of basic Bessel functions, the functions J ν + α(x) and associated orthogonal polynomials. J. Math. Anal. Appl. 86(1), 11–19 (1982)Google Scholar
  142. 142.
    M.E.H. Ismail, On Jackson’s third q-Bessel function. preprint (1996)Google Scholar
  143. 143.
    M.E.H Ismail, Classical and Quantum Orthogonal Polynomials in One Variable (Cambridge University Press, Cambridge, 2005)Google Scholar
  144. 144.
    M.E.H. Ismail, S.J. Johnston, Z.S. Mansour, Structure relations for q-polynomials and some applications. Appl. Anal. 90(3–4), 747–767 (2011)Google Scholar
  145. 145.
    M.E.H. Ismail, L. Lorch, M.E. Muldoon, Completely monotonic functions associated with the gamma functions and its q-analogues. J. Math. Anal. Appl. 116, 1–9 (1986)Google Scholar
  146. 146.
    M.E.H. Ismail, Z.S.I. Mansour, q-analogues of Freud weights and nonlinear difference equations. Adv. Appl. Math. 45(4), 518–547 (2010)Google Scholar
  147. 147.
    M.E.H. Ismail, M. Rahman, Inverse operators, q-fractional integrals and q-Bernoulli polynomials. J. Approx. Theor. 114(2), 269–307 (2002)Google Scholar
  148. 148.
    M.E.H. Ismail, D. Stanton, Applications of q-Taylor theorems. J. Comp. Appl. Math. 153(1–2), 259–272 (2003)Google Scholar
  149. 149.
    M.E.H. Ismail, D. Stanton, q-Taylor theorems, polynomial expansions, and interpolation of entire functions. J. Approx. Theor. 123(1), 125–146 (2003)Google Scholar
  150. 150.
    M.E.H. Ismail, A.I. Zayed, A q-analogue of the Whittaker-Shannon-Koteĺnikov sampling theorem. Proc. Am. Math. Soc. 131(2), 3711–3719 (2003)Google Scholar
  151. 151.
    M.E.H. Ismail, C. Zhang, Zeros of entire functions and a problem of Ramanujan. Adv. Math. 209(1), 363–380 (2007)Google Scholar
  152. 152.
    M.E.H. Ismail, R. Zhang, Diagonalization of certain integral operators. Adv. Math. 109(1), 1–33 (1994)Google Scholar
  153. 153.
    F.H. Jackson, On generalized functions of Legendre and Bessel. Trans. Roy. Soc. Edinb. 41, 1–28 (1903)Google Scholar
  154. 154.
    F.H. Jackson, A basic-sine and cosine with symbolical solutions of certain differential equations. Proc. Edinb. Math. Soc. 22, 28–38 (1903/1904)Google Scholar
  155. 155.
    F.H. Jackson, A generalization of the function Γ(n) and x n. Proc. Roy. Soc. Lond. 74, 64–72 (1904)Google Scholar
  156. 156.
    F.H. Jackson, The applications of basic numbers to Bessel’s and Legendre’s equations (second paper). Proc. Lond. Math. Soc. 3(2), 1–23 (1905)Google Scholar
  157. 157.
    F.H. Jackson, The basic gamma function and elliptic functions. Proc. Roy. Soc. A 76, 127–144 (1905)Google Scholar
  158. 158.
    F.H. Jackson, On q-functions and a certain difference operator. Trans. Roy. Soc. Edinb. 46, 64–72 (1908)Google Scholar
  159. 159.
    F.H. Jackson, A q-form of Taylor’s theorem. Messenger Math. 38, 62–64 (1909)Google Scholar
  160. 160.
    F.H. Jackson, On q-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)Google Scholar
  161. 161.
    F.H. Jackson, The q-integral analogous to Borel’s integral. Messenger Math. 47, 57–64 (1917)Google Scholar
  162. 162.
    A. Jirari, Second-order Sturm Liouville difference equations and orthogonal polynomials. Mem. Am. Math. Soc. 115(542)x, pp. 138 (1995)Google Scholar
  163. 163.
    V. Kac, P. Cheung, Quantum Calculus (Springer, New York, 2002)Google Scholar
  164. 164.
    H.H. Kairies, M.E. Muldoon, Some characterizations of q-factorial functions. Aequationes Mathematicae 25, 67–76 (1982)Google Scholar
  165. 165.
    H. Karabulut, Distributed Gaussian polynomials as q-oscillator eigenfunctions. J. Math. Phys. 47(1), 13 (2006)Google Scholar
  166. 166.
    O.M. Katkova, A.M. Vishnyakova, A sufficient condition for a polynomial to be stable. J. Math. Anal. Appl. 347(1), 81–89 (2008)Google Scholar
  167. 167.
    A.A. Kilbas, Fractional calculus of the generalized Wright function. Fract. Calc. Appl. Anal. 8(2), 113–126 (2005)Google Scholar
  168. 168.
    A.A. Kilbas, M. Saigo, R.K Saxena, Generalized Mittag-Leffler functions and generalized fractional calculus operator. Integr. Transforms Spec. Funct. 15(1), 31–49 (2004)Google Scholar
  169. 169.
    A.A. Kilbas, H.M. Srivastava, J.I. Trujillo, Theory and Applications of Fractional Differential Equations, 1st edn. (Elsevier, London, 2006)Google Scholar
  170. 170.
    Y.O. Kim, A proof of the Pólya-Wiman conjecture. Proc. Am. Math. Soc. 109(4), 1045–1052 (1990)Google Scholar
  171. 171.
    W.A. Kirk, M.A. Khamsi, An Introduction to Metric Spaces and Fixed Point Theory (Wiley, New York, 2001)Google Scholar
  172. 172.
    V.S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. Higher transcendental functions and their applications. J. Comput. Appl. Math. 118(1–2), 241–259 (2000)Google Scholar
  173. 173.
    H. Kober, On fractional integrals and derivatives. Quart. J. Math. Oxford Ser. 11, 193–211 (1940)Google Scholar
  174. 174.
    H.T. Koelink, R.F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials. J. Math. Anal. Appl. 186(3), 690–710 (1994)Google Scholar
  175. 175.
    A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis (Dover Publications, New York, 1957)Google Scholar
  176. 176.
    T.H. Koornwinder, R.F. Swarttouw, On q-analogues of Fourier and Hankel transforms. Trans. Am. Math. Soc. 333(1), 445–461 (1992)Google Scholar
  177. 177.
    V.P. Kostov, B. Shapiro, Hardy-Petrovitch-Hutchinson’s problem and partial theta function. arXiv:1106.6262v1[math. CA] (2011)Google Scholar
  178. 178.
    J.L. Lavoie, T.J. Osler, R. Tremblay, Fractional derivative and special functions. SIAM Rev. 18(2), 240–268 (1976)Google Scholar
  179. 179.
    C.W. Leibniz, Mathematische Schriften (Georg Olms Verlagsbuchhandlung, Hildesheim, 1962)Google Scholar
  180. 180.
    A.V. Letinkov, Theory of differentiation of fractional order. Mat. Sb. 3, 1–68 (1868)Google Scholar
  181. 181.
    B.Ja. Levin, Distribution of Zeros of Entire Functions, vol. 5 of Translations of Mathematical Monographs (Amer. Math. Soc., Providence, 1980)Google Scholar
  182. 182.
    B.M. Levitan, I.S. Sargsjan, Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators (Amer. Math. Soc., Providence, 1975)Google Scholar
  183. 183.
    B.M. Levitan, I.S. Sargsjan, Sturm Liouville and Dirac Operators (Kluwer Academic, Dordrecht, 1991)Google Scholar
  184. 184.
    X. Li, C. Zhang, Existence of analytic solutions to analytic nonlinear q-difference equations. J. Math. Anal. Appl. 375(2), 412–417 (2011)Google Scholar
  185. 185.
    M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions (Cambridge University Press, New York, 1960)Google Scholar
  186. 186.
    J. Liouville, Mèmoire sur le calcul des différentielles à indices quelconques. J. de I’Ecole Polytechnique 13, 71–162 (1832)Google Scholar
  187. 187.
    J.E. Littelwood, On the asymptotic approximation to integral functions of order zero. Proc. Lond. Math. Soc. 5(2), 361–410 (1907)Google Scholar
  188. 188.
    H.K. Liu, Application of a differential transformation method to strongly nonlinear damped q-difference equations. Comput. Math. Appl. 61(9), 2555–2561 (2011)Google Scholar
  189. 189.
    Y.K. Liu, The linear q-difference equation y(x) = ay(qx) + f(x). Appl. Math. Lett. 8(1), 15–18 (1995)Google Scholar
  190. 190.
    Z.G. Liu, Two q-difference equations and q-operator identities. J. Differ. Equat. Appl. 16(11), 1293–1307 (2010)Google Scholar
  191. 191.
    B. López, J.M. Marco, J. Parcet, Taylor series for the Askey-Wilson operator and classical summation formulas. Proc. Am. Math. Soc. 134(8), 2259–2270 (2006)Google Scholar
  192. 192.
    D.Q. Lu, q-difference equation and the Cauchy operator identities. J. Math. Anal. Appl. 359(1), 265–274 (2009)Google Scholar
  193. 193.
    Yu. Luchko, Asymptotics of zeros of the Wright function. Z. Anal. Anwendungen 19(2), 583–595 (2000)Google Scholar
  194. 194.
    I. Lutzenko, V. Spiridonov, A. Zhedanov, On the spectrum of a q-scillator with a linear interaction. Phys. Lett. A 204(3–4), 236–242 (1995)Google Scholar
  195. 195.
    H. Mabrouk, q-heat operator and q-Poisson’s operator. Fract. Calc. Appl. Anal. 9(3), 265–286 (2006)Google Scholar
  196. 196.
    J.T. Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 13(3), 329–334 (2010)Google Scholar
  197. 197.
    J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Comm. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)Google Scholar
  198. 198.
    N.I. Mahmudov, P. Sabancıgil, q-parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, 15 (2008) (Art. ID 816367)Google Scholar
  199. 199.
    F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)Google Scholar
  200. 200.
    F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118(1–2), 283–299 (2000)Google Scholar
  201. 201.
    F. Mainardi, G. Pagnini, The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 141(1), 51–62 (2003)Google Scholar
  202. 202.
    H.L. Manocha, B.L. Sharma, Fractional derivatives and summation. J. Indian Math. Soc. 38(1–4), 371–382 (1974)Google Scholar
  203. 203.
    Z.S.I. Mansour, q-Difference Equations. Master’s thesis, Faculty of Science, Cairo University, Giza, Egypt, 2001Google Scholar
  204. 204.
    Z.S.I. Mansour, On q-Difference and Fractional Equations and Their Solutions. PhD thesis, Faculty of Science, Cairo University, Giza, Egypt, 2006Google Scholar
  205. 205.
    Z.S.I. Mansour, Linear sequential q-difference equations of fractional order. Fract. Calc. Appl. Anal. 12(2), 160–178 (2009)Google Scholar
  206. 206.
    Z.S.I. Mansour, Generalizations of fractional q-Leibniz formulae. submitted (2012)Google Scholar
  207. 207.
    Z.S.I. Mansour, Generalizations of Rubin’s q 2-fourier transform and q-difference operator. submitted (2012)Google Scholar
  208. 208.
    V.A. Marchenko, Sturm–Liouville Operators and Applications (Birkhäuser, Basel, 1986)Google Scholar
  209. 209.
    T.E. Mason, On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 37(4), 439–444 (1915)Google Scholar
  210. 210.
    A. Matsuo, Jackson integrals of Jordan-Pochhammer type and quantum Knizhnik-Zamolodchikov equations. Comm. Math. Phys. 151(2), 263–273 (1993)Google Scholar
  211. 211.
    A.C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions (Pitman Research Notes in Mathematics, London, 1979)Google Scholar
  212. 212.
    H. Mellin, Om definita integraler. Acta Societatis Scientiarum Fennicae 20(7), 1–39 (1895)Google Scholar
  213. 213.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  214. 214.
    R. Mishra, On certain generalized q-Laplace and Stieltjes transforms. J. Math. Sci. 5(2), 22–37 (1970)Google Scholar
  215. 215.
    R. Mishra, A few inversion formulae for generalized q-Laplace transforms. Indian J. Math. 14(3), 157–172 (1972)Google Scholar
  216. 216.
    R. Mishra, Applications of fractional q-integration on the theory of a generalized q-Stieltjes transform. Bull. Calcutta. Math. Soc. 69(5), 247–254 (1977)Google Scholar
  217. 217.
    R. Mishra, Application of generalized q-Laplace transforms to the solutions of certain q-integral equations. Indian J. Math. 23(1–3), 115–120 (1981)Google Scholar
  218. 218.
    R. Mishra, On a relation between a q-Laplace transform and two generalized q-Laplace transforms. Proc. Natl. Acad. Sci. India Sect. A 53(4), 379–385 (1983)Google Scholar
  219. 219.
    G. Mittag-Leffler, Sur l’intégrale de Laplace-Abel. C. R. Acad. Sci. Paris (Ser. II) 136, 937–939 (1902)Google Scholar
  220. 220.
    G. Mittag-Leffler, Sur la nouvelle fonction E α(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)Google Scholar
  221. 221.
    G. Mittag-Leffler, Une généralisation de l’intégrale de Laplace-Abel. C. R. Acad. Sci. Paris (Ser. II) 137, 537–539 (1903)Google Scholar
  222. 222.
    G. Mittag-Leffler, Sopra la funzione E α(x). R. Accad. Lincei, Rend. (Ser. V) 13, 3–5 (1904)Google Scholar
  223. 223.
    G. Mittag-Leffler, Sur la reprwesentation analytique dune branche uniforme dune fonction monogéne. Acta Math. 29, 101–182 (1905)Google Scholar
  224. 224.
    D.S. Moak, The q-gamma function for q > 1. Aequationes Mathematicae 20(2–3), 278–285 (1980)Google Scholar
  225. 225.
    A. Nemri, A. Fitouhi, Polynomial expansions for solution of wave equation in quantum calculus. Matematiche 65(1), 73–82 (2010)Google Scholar
  226. 226.
    Y. Nikolova, L. Boyadjiev, Integral transform method to solve a time-space fractional diffusion equation. Fract. Calc. Appl. Anal. 13(1), 57–67 (2010)Google Scholar
  227. 227.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic, London, 1974)Google Scholar
  228. 228.
    T.J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18(3), 658–674 (1970)Google Scholar
  229. 229.
    T.J. Osler, Fractional derivatives and Leibniz rule. Am. Math. Mon. 78(6), 645–649 (1971)Google Scholar
  230. 230.
    T.J. Osler, A further extension of the Leibniz rule to fractional derivatives and its relation to Parserval’s formula. SIAM J. Math. Anal. 3(1), 1–16 (1972)Google Scholar
  231. 231.
    T.J. Osler, The integral analogue of the Leibniz rule. Math. Comp. 26(120), 903–915 (1972)Google Scholar
  232. 232.
    R.B. Paris, D. Kaminski, Asymptotics and Mellin-Barnes Integrals (Cambridge University Press, Cambridge, 2001)Google Scholar
  233. 233.
    I. Podlubny, in Solution of Linear Fractional Differential Equations with Constant Coefficients, ed. by P. Rusev, I. Dimovski, V. Kiryakova. Transform Methods and Special Functions (SCT Publications, Singapore, 1995), pp. 217–228Google Scholar
  234. 234.
    I. Podlubny, Fractional Differential Equations (Academic, New York, 1999)Google Scholar
  235. 235.
    I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)Google Scholar
  236. 236.
    I. Podlubny, A.M.A. El-Sayed, On two definitions of fractional derivatives. UEF-03-96, Inst. Exp. Phys, Slovak Acad. Sci., 1996. ISBN 80-7099-252-2Google Scholar
  237. 237.
    G. Pólya, Über die Nullstellengewisser ganzer Functions(German). Math. Z. 2(3–4), 352–383 (1918)Google Scholar
  238. 238.
    G. Pólya, G. Szegö, Problems and Theorems in Analysis, vol. I (Springer, New York, 1972). Translated from the German by D. Aeppli Die Grundlehren der mathematischen Wissenschaften, Band 193Google Scholar
  239. 239.
    A.Yu. Popov, On the spectral values of a boundary value problem and the zeros of Mittag-Leffler functions. Differ. Equat. 38(5), 642–653 (2002). Translation from Differ. Uravn. 38(5), 611–621 (2002)Google Scholar
  240. 240.
    A.Yu. Popov, On zeroes of Mittag–Leffler functions with parameter ρ < 1 ∕ 2. Anal. Math. 32(3), 207–246 (2006)Google Scholar
  241. 241.
    A.Yu. Popov, A.M. Sedletskiĭ, Distribution of zeros of the Mittag-Leffler function. Dokl. Math. 67(3), 336–339 (2003). Translation from Dokl. Akad. Nauk 390(2), 165–168 (2003)Google Scholar
  242. 242.
    E.L. Post, Generalized differentiation. Trans. Am. Math. Soc. 32, 723–781 (1930)Google Scholar
  243. 243.
    A.D. Poularikas (ed.), The Transforms and Applications Handbook, 2nd edn. The Electrical Engineering Handbook Series (CRC Press, FL, 2000)Google Scholar
  244. 244.
    T.R. Prabhakar, A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)Google Scholar
  245. 245.
    S.D. Prasad, Certain q-transforms. Math. Scand. 30, 324–330 (1972)Google Scholar
  246. 246.
    A.V. Pskhu, On the real zeros of functions of Mittag-Leffler type. Math. Notes 77(3–4), 546–552 (2005). Translation from Mat. Zametki 77(4), 592–599 (2005)Google Scholar
  247. 247.
    S.D. Purohit, Summation formulae for basic hypergeometric functions via fractional q-calculus. Mathematica (Catania) 64(1), 67–75 (2009)Google Scholar
  248. 248.
    S.D. Purohit, On a q-extension of the Leibniz rule via Weyl type of q-derivative operator. Kyungpook Math. J. 50(4), 473–482 (2010)Google Scholar
  249. 249.
    S.D. Purohit, R.K. Raina, Generalized q-Taylor’s series and applications. Gen. Math. 18(3), 19–28 (2010)Google Scholar
  250. 250.
    S.D. Purohit, R.K. Yadav, On generalized fractional q-integral operators involving the q-Gauss hypergeometric function. Bull. Math. Anal. Appl. 2(4), 35–44 (2010)Google Scholar
  251. 251.
    M. Rahman, A note on the orthogonality of Jackson’s q-Bessel functions. Can. Math. Bull. 32(3), 369–376 (1989)Google Scholar
  252. 252.
    M. Rahman, Q.M. Tariq, Addition formulas for q-Legendre-type functions. Meth. Appl. Anal. 6(1), 3–20 (1999)Google Scholar
  253. 253.
    P.M. Rajković, M. Stanković, S.D. Marinković, Mean value theorems in q-calculus. Mat. Vesnik 54, 171–178 (2002)Google Scholar
  254. 254.
    P.M. Rajković, S.D. Marinković, M.S. Stanković, Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)Google Scholar
  255. 255.
    P.M. Rajković, S.D. Marinković, M.S. Stanković, On q-analogues of Caputo derivative and Mittag–Leffler function. Fract. Calc. Appl. Anal. 10(4), 359–373 (2007)Google Scholar
  256. 256.
    J.P. Ramis, About the growth of entire functions solutions of linear algebraic q-difference equations. Ann. Fac. Sci. Toulouse Math. 1(6), 53–94 (1992)Google Scholar
  257. 257.
    C. Richard, On q-functional equations and excursion moments. Discrete Math. 309(1), 207–230 (2009)Google Scholar
  258. 258.
    E.Yu. Romanenko, Differential-difference equations reducible to difference and q-difference equations. Comput. Math. Appl. 42(3–5), 615–626 (2001)Google Scholar
  259. 259.
    P.G. Rooney, On the ranges of certain fractional integrals. Can. J. Math. 24, 1198–1216 (1972)Google Scholar
  260. 260.
    P.G. Rooney, A survey of mellin multipliers. fractional calculus. Res. Notes Math. 138, 176–187 (1985)Google Scholar
  261. 261.
    B. Ross (ed.), Fractional Calculus and Its Applications, vol. 457 of Lecture Notes of Mathematics. Proceeding of the International Conference held at the University of New Haven, June 15-16, 1974 (Springer, Berlin, 1975)Google Scholar
  262. 262.
    B. Ross, Fractional Calculus. An historical apologia for the development of a calculus using differentiation and antidifferentiation of non-integral orders. Math. Mag. 50(3), 115–122 (1977)Google Scholar
  263. 263.
    B. Ross, Origins of fractional calculus and some applications. Int. J. Math. Statist. Sci. 1(1), 21–34 (1992)Google Scholar
  264. 264.
    B. Ross, B.K. Sachdeva, The solution of certain integral equations by means of operators of arbitrary order. Am. Math. Mon. 97(6), 498–503 (1990)Google Scholar
  265. 265.
    R.L. Rubin, A q 2-analogue operator for q 2-analogue Fourier analysis. J. Math. Anal. Appl. 212(2), 571–582 (1997)Google Scholar
  266. 266.
    R.L. Rubin, Duhamel solutions of non-homogeneous q 2-analogue wave equations. Proc. Am. Math. Soc. 135(3), 777–785 (2007)Google Scholar
  267. 267.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado (eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, London, 2007)Google Scholar
  268. 268.
    E.B. Saff, A.D. Snider, Fundamentals of Complex Analysis for Mathematics, Science, and Engineering, 3rd edn. (Prentice-Hall, Englewood Cliffs, 2003)Google Scholar
  269. 269.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordan and Breach Science Publisher, New York, 1993)Google Scholar
  270. 270.
    R.K. Saxena, G.C. Modi, S.L Kalla, A basic analogue of Fox’s H-function. Rev. Técn. Fac. Ingr. Univ. Zulia 6, 139–143 (1983). Special IssueGoogle Scholar
  271. 271.
    R.K. Saxena, R.K. Yadav, S.D. Purohit, Kober fractional q-integral operator of the basic analogue of the H-function. Rev. Téc. Ing. Univ. Zulia, ago 28(2), 154–158 (2005)Google Scholar
  272. 272.
    A.M. Sedletskiĭ, Asymptotic formulae for zeros of a function of Mittag-Leffler’s type. Anal. Math. 20(2), 117–132 (1994)Google Scholar
  273. 273.
    A.M. Sedletskiĭ, On the zeros of functions of Mittag–Leffler type. Math. Notes 68(5), 602–613 (2000). Translation from Mat. Zametki 68(5), 710–724 (2000)Google Scholar
  274. 274.
    S. Sergeev, Quantum curve in q-oscillator model. Int. J. Math. Math. Sci. 2006, 31 (2006) (Art. ID 92064)Google Scholar
  275. 275.
    G.E. Shilov, Linear Algebra (Dover, New York, 1971)Google Scholar
  276. 276.
    I.N. Sneddon, Mixed Boundary ValueProblems (North Holland, Amsterdam, 1966)Google Scholar
  277. 277.
    S.K. Suslov, Another addition theorem for the q-exponential function. J. Phys. A Gen. 33, L375–L380 (2000)Google Scholar
  278. 278.
    S.K. Suslov, Some expansions in basic Fourier series and related topics. J. Approx. Theor. 115, 289–353 (2002)Google Scholar
  279. 279.
    S.K. Suslov, An Introduction to Basic Fourier Series, vol. 9 of Kluwer Series Developments in Mathematics (Kluwer Academic Publishers, Boston, 2003)Google Scholar
  280. 280.
    R.F. Swarttouw, The Hahn-Exton q-Bessel Function. PhD thesis, The Technical University of Delft, 1992Google Scholar
  281. 281.
    R.F. Swarttouw, H.G. Meijer, A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation. Proc. Am. Math. Soc. 120(3), 855–864 (1994)Google Scholar
  282. 282.
    J. Thomae, Beitrage zur theorie der durch die heinesche reihe . J. Reine Angew. Math. 70, 258–281 (1869)Google Scholar
  283. 283.
    I.V. Tikhonov, Yu.S. Éĭdeĺman, An inverse problem for a differential equation in a Banach space and the distribution of zeros of an entire Mittag-Leffler function. Differ. Equat. 38(5), 669–677 (2002). Translation from Differ. Uravn. 38(5), 637–644 (2002)Google Scholar
  284. 284.
    E. Titchmarsh, Eigenfunction Expansions Associated with Second Order Differential Equations (Clarendon Press, Oxford, 1962)Google Scholar
  285. 285.
    W.J. Trjitzinsky, Analytic theory of linear q-difference equations. Acta Math. 61(1), 1–38 (1933)Google Scholar
  286. 286.
    T. Tsuda, On an integrable system of q-difference equations satisfied by the universal characters: Its lax formalism and an application to q-painlevé equations. Comm. Math. Phys. 293(2), 347–359 (2010)Google Scholar
  287. 287.
    L. Di Vizio, Local analytic classification of q-difference equations with | q |  = 1. J. Noncommut. Geom. 3(1), 125–149 (2009)Google Scholar
  288. 288.
    Y. Watanabe, Notes on the generalized derivative of Riemann–Liouville and its application to Leibniz’s formula. I and II. Tôhoku Math. J. 34, 8–41 (1931)Google Scholar
  289. 289.
    M. Welter, Interpolation of entire functions on regular sparse sets and q-Taylor series. J. Théor. Nombres Bordeaux 17(1), 397–404 (2005)Google Scholar
  290. 290.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, London, 1927). Reprinted (1973)Google Scholar
  291. 291.
    D.V. Widder, Laplace Transform (Princeton University Press, Princeton, 1941)Google Scholar
  292. 292.
    A. Wiman, Über den fundamentalsatz in der teorie der funktionenE α(x). Acta Math. 29, 191–201 (1905)Google Scholar
  293. 293.
    E.M. Wright, On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 8, 71–79 (1933)Google Scholar
  294. 294.
    E.M. Wright, The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. s1–10(4), 286–293 (1935)Google Scholar
  295. 295.
    E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. Roy. Soc. Lond. Ser. A 238, 423–451 (1940)Google Scholar
  296. 296.
    E.M. Wright, The asymptotic expansion of the generalized hypergeometric function II. Proc. Lond. Math. Soc. 46(2), 389–408 (1940)Google Scholar
  297. 297.
    W. Wyss, The fractional diffusion equation. J. Math. Phys. 27(11), 2782–2785 (1986)Google Scholar
  298. 298.
    B. Xu, W. Zhang, Small divisor problem for an analytic q-difference equation. J. Math. Anal. Appl. 342(1), 694–703 (2008)Google Scholar
  299. 299.
    X. Zheng, Z. Chen, Some properties of meromorphic solutions of q-difference equations. J. Math. Anal. Appl. 361(2), 472–480 (2010)Google Scholar
  300. 300.
    A. Zygmund, Trigonometric Series, vol. II (Cambridge University Press, Cambridge, 1959)Google Scholar
  301. 301.
    M. Ismail, SIAM Rev. 16, 279–281 (1985)Google Scholar
  302. 302.
    W. Hahn, Math. Rev. 84i, 39002 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mahmoud H. Annaby
    • 1
  • Zeinab S. Mansour
    • 2
  1. 1.Faculty of Science Department of MathematicsCairo UniversityGizaEgypt
  2. 2.Faculty of Science Department of MathematicsKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations