Advertisement

A Basic Parameterized Complexity Primer

  • Rod Downey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7370)

Abstract

This article was prepared for Mike Fellows Festschrift for his 60th Birthday. Since many of the contributed articles revolve around the concept of parameterized complexity, it seems reasonable to give the reader a (short) primer to this area. It is not intended as a complete survey of this very broad area in its current state; rather it is intended to give a flavour of the techniques used and the directions taken. Whilst not doing the area justice, the basics of the techniques for proving tractability, establishing hardness, and the philosophy are given. The basics from this paper will be amplified by many other articles in this Festschrift. Much fuller accounts can be found in the books Downey-Fellows [DF98, DFta], Niedermeier [Nie06], Flum-Grohe [FG06], the two issues of the Computer Journal[DFL08] and the recent survey Downey-Thilikos [DTH11].

Keywords

Polynomial Time Parameterized Complexity Vertex Cover Tree Decomposition Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACFLSS04]
    Abu-Khzam, F., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments. In: Proceedings of the 6th ALENEX 2004, pp. 62–69 (2004)Google Scholar
  2. [AFLS07]
    Abu-Khzam, F., Fellows, M., Langston, M., Suters, W.: Crown Structures for Vertex Cover Kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [ALSS06]
    Abu-Khzam, F., Langston, M., Shanbhag, P., Symons, C.: Scalable Parallel Algorithms for FPT Problems. Algorithmica 45, 269–284 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [ADF93]
    Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Intractability II (Extended Absrtact). In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 374–385. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. [ADF95]
    Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogs. Annals of Pure and Applied Logic 73, 235–276 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AF93]
    Abrahamson, K., Fellows, M.: Finite Automata, Bounded Treewidth and Wellquasiordering. In: Graph Structure Theory. Contemporary Mathematics Series, vol. 147, pp. 539–564. American Mathematical Society(1993)Google Scholar
  7. [AGK08]
    Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceedings of the of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 641–650 (2008)Google Scholar
  8. [AR01]
    Alekhnovich, M., Razborov, A.: Resolution is Not Automatizable Unless W[P] is Tractable. In: Proc. of the 42nd IEEE FOCS, pp. 210–219 (2001)Google Scholar
  9. [AYZ94]
    Alon, N., Yuster, R., Zwick, U.: Color-Coding: A New Method for Finding Simple Paths, Cycles and Other Small Subgraphs Within Large Graphs. In: Proc. Symp. Theory of Computing (STOC), pp. 326–335. ACM (1994)Google Scholar
  10. [Ar96]
    Arora, S.: Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 2–12 (1996)Google Scholar
  11. [Ar97]
    Arora, S.: Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems. In: Proc. 38th Annual IEEE Symposium on the Foundations of Computing (FOCS 1997), pp. 554–563. IEEE Press (1997)Google Scholar
  12. [Baz95]
    Bazgan, C.: Schémas d’approximation et complexité paramétrée, Rapport de stage de DEA d’Informatique à Orsay (1995)Google Scholar
  13. [BBCN12]
    Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in Computational Aspects of Voting – a Parameterized Complexity Perspective. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg (2012)Google Scholar
  14. [BL95]
    Bienstock, D., Langston, M.: Algorithmic Implications of the Graph Minor Theorem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbook of Operations Research and Management Science: Network Models, pp. 481–502. North Holland (1995)Google Scholar
  15. [Bod93]
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. In: Proceedings of the 25th ACM Symposium on Theory of Computing, pp. 226–234 (1993)Google Scholar
  16. [Bod96]
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Bod12]
    Bodlaender, H.L.: Fixed-Parameter Tractability of Treewidth and Pathwidth. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 196–227. Springer, Heidelberg (2012)Google Scholar
  18. [BDFH08]
    Bodlaender, H.L., Downey, R., Fellows, M., Hermelin, D.: On Problems without Polynomial Kernels (Extended Abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [BDFH09]
    Bodlaender, H.L., Downey, R., Fellows, M., Hermelin, D.: On Problems without Polynomial Kernels. Journal of Computing and System Sciences 75(8), 423–434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [BDFHW95]
    Bodlaender, H.L., Downey, R., Fellows, M., Hallett, M., Wareham, H.T.: Parameterized Complexity Analysis in Computational Biology. Computer Applications in the Biosciences 11, 49–57 (1995)Google Scholar
  21. [BFH94]
    Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for Problems of Bounded Width: Hardness for the W Hierarchy. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 449–458 (1994)Google Scholar
  22. [BFLPST09]
    Bodlaender, H.L., Fomin, F., Lokshtanov, D., Pennick, E., Saurabh, S., Thilikos, D.: (Meta)kernelization. In: 50th IEEE FOCS (2009)Google Scholar
  23. [BK96]
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewdith of graphs. Algorithms 21, 358–402 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [BoK08]
    Bodlaender, H.L., Koster, A.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51, 256–269 (2008)Google Scholar
  25. [BTY08]
    Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction, transformations give evidence for non-existence of polynomial kernels, Tech. Rept, UU-CS-2008-030, Utrecht Univ. (2008)Google Scholar
  26. [BPR01]
    Bonnet, M., Pitazzi, T., Raz, R.: On Interpolation and Axiomatization for Frege Systems. SIAM J. Comput. 29, 1939–1967 (2000)CrossRefGoogle Scholar
  27. [LeC96]
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [CC97]
    Cai, L., Chen, J.: On Fixed-Parameter Tractability and Approximability of NP-Hard Optimization Problems. Computer and Systems Sciences 54, 465–474 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. [CCDF96]
    Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the Parameterized Complexity of Short Computation and Factorization. Arch. for Math. Logic 36, 321–337 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [CFJR07]
    Cai, L., Fellows, M., Juedes, D., Rosamond, F.: The complexity of polynomial time approximation. Theoretical Computer Science 41, 459–477 (2007)MathSciNetzbMATHGoogle Scholar
  31. [CJ01]
    Cai, L., Juedes, D.W.: Subexponential Parameterized Algorithms Collapse the W-Hierarchy. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 273–284. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. [CJ03]
    Cai, L., Juedes, D.W.: On the existence of subexponential parameterized algorithms. Journal of Computing snd Systems Science 67, 789–807 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [CDRST03]
    Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving Large FPT Problems on Coarse Grained Parallel Machines. Journal of Computer and Systems Sciences 67(4), 691–706 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [CK00]
    Chekuri, C., Khanna, S.: A PTAS for the Multiple Knapsack Problem. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 213–222 (2000)Google Scholar
  35. [CCFHJKX05]
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201, 216–231 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. [CFM11]
    Chen, Y., Flum, J., Müller, M.: Lower Bounds for Kernelizations and Other Preprocessing Procedures. Theory Comput. Syst. 48(4), 803–839 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [CK12]
    Chen, J., Kanj, I.: Parameterized Complexity and Subexponential-Time Computability. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 162–195. Springer, Heidelberg (2012)Google Scholar
  38. [CM99]
    Chen, J., Miranda, A.: A Polynomial-Time Approximation Scheme for General Multiprocessor Scheduling. In: Proc. ACM Symposium on Theory of Computing (STOC 1999), pp. 418–427. ACM Press (1999)Google Scholar
  39. [CKX10]
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411, 3736–3756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. [CF12]
    Chen, J., Flum, J.: A Parameterized Halting Problem. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 364–397. Springer, Heidelberg (2012)Google Scholar
  41. [CG07]
    Chen, J., Grohe, M.: An isomorphism between subexponential and parameterized complexity theory. SIAM. J. Comput. 37, 1228–1258 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. [Co87]
    Courcelle, B.: Recognizability and Second-Order Definability for Sets of Finite Graphs, Technical Report I-8634, Universite de Bordeaux (1987)Google Scholar
  43. [CDF97]
    Courcelle, B., Downey, R.G., Fellows, M.: A Note on the Computability of Graph Minor Obstruction Sets for Monadic Second Order Ideals. Journal of Universal Computer Science 3, 1194–1198 (1997)MathSciNetzbMATHGoogle Scholar
  44. [DeH08]
    Demaine, E., Hajiaghayi, M.: The Bidimensionality Theory and Its Algorithmic Applications. Comput. J. 51(3), 292–302 (2008)CrossRefGoogle Scholar
  45. [Do03]
    Downey, R.G.: Parameterized complexity for the skeptic. In: 18th Annual Conference on Computational Complexity, pp. 147–169. IEEE (2003)Google Scholar
  46. [Do12]
    Downey, R.: The Birth and Early Years of Parameterized Complexity. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 17–38. Springer, Heidelberg (2012)Google Scholar
  47. [DF92a]
    Fellows, M.R.: Fixed parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)MathSciNetzbMATHGoogle Scholar
  48. [DF92b]
    Downey, R.G, Fellows, M.: Fixed parameter intractability. In: Proceedings of Seventh Annual Conference on Structure in Complexity. IEEE Publication, pp. 36–50 (1992)Google Scholar
  49. [DF93]
    Downey, R.G, Fellows, M.: Fixed Parameter Tractability and Completeness III: Some Structural Aspects of the W-Hierarchy. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, pp. 166–191. Cambridge Univ. Press (1993)Google Scholar
  50. [DF95a]
    Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness I: Basic Theory. SIAM Journal of Computing 24, 873–921 (1995)CrossRefzbMATHGoogle Scholar
  51. [DF95b]
    Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness II: Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  52. [DF95c]
    Downey, R.G., Fellows, M.R.: Parametrized Computational Feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser, Boston (1995)CrossRefGoogle Scholar
  53. [DF98]
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1998)Google Scholar
  54. [DFta]
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2012) (in preparation)Google Scholar
  55. [DFL08]
    Downey, R.G., Fellows, M., Langston, M.: Two special issue of The Computer Journal devoted to Parameterized Complexity 58(1,3) (2008)Google Scholar
  56. [DFKHW94]
    Downey, R.G., Fellows, M., Kapron, B., Hallett, M., Wareham, H.T.: The Parameterized Complexity of Some Problems in Logic and Linguistics. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 89–100. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  57. [DFMR08]
    Downey, R.G., Fellows, M., McCartin, C., Rosamond, F.: Parameterized approximation of dominating set problems. Information Processing Letters 109(1), 68–70 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  58. [DFR98]
    Downey, R.G., Fellows, M., Regan, K.: Parameterized circuit complexity and the W-hierarchy. Theoretical Computer Science 191, 97–115 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  59. [DFS98]
    Downey, R.G., Fellows, M., Stege, U.: Parameterized Complexity: A Framework for Systematically Confronting Computational Intractability. DIMACS series on Combinatorics in the 21st Century. AMS Publ. (1998)Google Scholar
  60. [DFGW07]
    Downey, R., Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and reducibility. Annals of Pure and Applied Logic 148, 1–19 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  61. [DTH11]
    Downey, R.G., Thilikos, D.: Confronting intractability via parameters. Computer Science Review 5, 279–317 (2011)CrossRefzbMATHGoogle Scholar
  62. [ELRW11]
    Eblen, J.D., Langston, M.A., Rogers, G.L., Weerapurage, D.P.: Parallel Vertex Cover: A Case Study in Dynamic Load Balancing. In: Proceedings of Australasian Symposium on Parallel and Distributed Computing, Perth, Australia (January 2011)Google Scholar
  63. [Ed65]
    Edmonds, J.: Paths, trees and flowers. Canadian J. Math. 17, 449–467 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  64. [EGG08]
    Eickmeyer, K., Grohe, M., Grüber, M.: Approximation of Natural W[P]-Complete Minimisation Problems Is Hard. In: IEEE Conference on Computational Complexity, pp. 8–18 (2008)Google Scholar
  65. [EJS01]
    Erlebach, T., Jansen, K., Seidel, E.: Polynomial Time Approximation Schemes for Geometric Graphs. In: Proc. ACM Symposium on Discrete Algorithms (SODA 2001), pp. 671–679 (2001)Google Scholar
  66. [FL87]
    Fellows, M., Langston, M.: Nonconstructive Proofs of Polynomial-Time Complexity. Information Processing Letters 26, 157–162 (1987/1988)MathSciNetCrossRefzbMATHGoogle Scholar
  67. [FL88]
    Fellows, M., Langston, M.: Nonconstructive Tools for Proving Polynomial-Time Complexity. Journal of the Association for Computing Machinery 35, 727–739 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  68. [FL89]
    Fellows, M.R., Langston, M.A.: An Analogue of the Myhill-Nerode Theorem and its Use in Computing Finite-Basis Characterizations. In: Proceedings of the IEEE Symposium on the Foundations of Computer Science, pp. 520–525 (1989)Google Scholar
  69. [FRRS06]
    Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Cliquewidth minimization is NP-hard. In: Proceedings STOC 2006, pp. 354–362 (2006)Google Scholar
  70. [FRRS09]
    Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Cliquewidth NP-complete. SIAM J. on Discrete Mathematics 23, 909–939 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  71. [FG02a]
    Flum, J., Grohe, M.: Describing Parameterized Complexity Classes. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 359–371. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  72. [FG02b]
    Flum, J., Grohe, M.: The Parameterized Complexity of Counting Problems. In: Conference version appeared in Proceedings of the 43rd IEEE Symposium on Foundations of Comupter Science (FOCS 2002), pp. 538–547 (2002)Google Scholar
  73. [FG04]
    Flum, J., Grohe, M.: Parameterized Complexity and Subexponential Time. Bulletin of the European Association for Theoretical Computer Science 84 (October 2004)Google Scholar
  74. [FG06]
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  75. [deF70]
    de Fluiter, B.: Algorithms for graphs of small treewidth, PhD Thesis, Utrecht Univ. (1970)Google Scholar
  76. [FGLS10]
    Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of Clique-Width Parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  77. [FS11]
    Fortnow, L., Santhanam, R.: Infeasible instances of compression and sucinct pcp’s. Journal of Computing and System Sciences 77, 91–106 (2011)CrossRefzbMATHGoogle Scholar
  78. [FrG01]
    Frick, M., Grohe, M.: Deciding First Order Properties of Locally Tree-Decomposable Structures. J. ACM 48, 1184–1206 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  79. [FrG02]
    Frick, M., Grohe, M.: The Complexity of First-Order and Monadic Second-Order Logic Revisited. In: LICS, pp. 215–224 (2002)Google Scholar
  80. [Fou03]
    Fouhy, J.: Computational Experiments on Graph Width Metrics, MSc Thesis, Victoria University, Wellington (2003)Google Scholar
  81. [GJ79]
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  82. [GS12]
    Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012)Google Scholar
  83. [GGKS95]
    Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four Strikes Against DNA Physical mapping. Journal of Computational Biology 2(1), 139–152 (1995)CrossRefGoogle Scholar
  84. [GNR01]
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for Closest String and Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  85. [Gr01a]
    Grohe, M.: Generalized Model-Checking Problems for First-Order Logic. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  86. [GK11]
    Grohe, M., Kreutzer, S.: Methods for Algorithmic Meta Theorems. In: Grohe, M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics. Contemporary Mathematics, vol. 558. American Mathematical Society (2011)Google Scholar
  87. [GMKW11]
    Grohe, M., Marx, D., Kawarbayashi, K., Wollan, P.: Finding Topological Subgraphs is Fixed-Parameter Tractable. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC 2011), pp. 479–488 (2011)Google Scholar
  88. [GY12]
    Gutin, G., Yeo, A.: Constraint Satisfaction Problems Parameterized Above or Below Tight Bounds: A Survey. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg (2012)Google Scholar
  89. [HM07]
    Hallett, M., McCartin, C.: A Faster FPT Algorithm for the Maximum Agreement Forest Problem. Theory of Computing Systems 41(3) (2007)Google Scholar
  90. [HKSWWta]
    Hermelin, D., Kratsch, S., Soltys, K., Whalstrom, M., Wu, X.: Hierarchies of inefficient kernelization (to appear)Google Scholar
  91. [Hi52]
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2, 326–336 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  92. [HW06]
    Hlineny, P., Whittle, G.: Matroid tree-width. Eur. J. Comb. 27(7), 1117–1128 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  93. [IPZ01]
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? JCSS 63(4), 512–530 (2001)MathSciNetzbMATHGoogle Scholar
  94. [KW90]
    Kannan, S., Warnow, T.: Inferring Evolutionary History from DNA Sequences. In: Proceedings of the 31st Annual Symposium on the Theory of Computing, pp. 362–378 (1990)Google Scholar
  95. [KST94]
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of Parameterized Completion Problems on Chordal and Interval Graphs: Minimum Fill-In and DNA Physical Mapping. In: Proc. 35th Annual Symposium on the Foundations of Computer Science (FOCS), pp. 780–791. IEEE Press (1994)Google Scholar
  96. [Ka72]
    Karp, R.: Reducibility Among Combinatorial Problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  97. [Ka11]
    Karp, R.: Heuristic algorithms in computational molecular biology. J. Comput. Syst. Sci. 77(1), 122–128 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  98. [KR02]
    Khot, S., Raman, V.: Parameterized Complexity of Finding Subgraphs with Hereditary properties. Theoretical Computer Science 289, 997–1008 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  99. [Ko12]
    Koblitz, N.: Crypto Galore! In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 39–50. Springer, Heidelberg (2012)Google Scholar
  100. [Ku30]
    Kuratowski, K.: Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)zbMATHGoogle Scholar
  101. [La12]
    Langston, M.: Fixed-Parameterized Tractability, a Prehistory. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 3–16. Springer, Heidelberg (2012)Google Scholar
  102. [LPSSV08]
    Langston, M., Perkins, A., Saxton, A., Scharff, J., Voy, B.: Innovative Computational Methods for Transcriptomic Data Analysis: A Case Study in the Use of FPT for Practical Algorithm Design and Implementation. The Computer Journal 51, 26–38 (2008)CrossRefGoogle Scholar
  103. [Le83]
    Lenstra, H.: Integer Programming with a Fixed Number of Variables. Mathematics of Operations Research 8, 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  104. [LMS12]
    Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – Preprocessing with A Guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)Google Scholar
  105. [MR99]
    Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat and MaxCut. J. Algorithms 31, 335–354 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  106. [Ma12]
    Marx, D.: What’s Next? Future Directions in Parameterized Complexity. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg (2012)Google Scholar
  107. [McC06]
    McCartin, C.: Parameterized counting problems. Annals of Pure and Applied Logic 138, 147–182 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  108. [Mo99]
    Mohar, B.: A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface. SIAM J. Discrete Math. 12, 6–26 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  109. [Mu06]
    Müller, M.: Randomized Approximations of Parameterized Counting Problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 50–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  110. [Mu08]
    Müller, M.: Valiant-Vazirani Lemmata for Various Logics. Electronic Colloquium on Computational Complexity (ECCC) 15(063) (2008)Google Scholar
  111. [Nie02]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitationschrift, University of Tübingen (September 2002)Google Scholar
  112. [Nie06]
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  113. [NR00]
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter tractable algorithms. Information Processing Letters 73, 125–129 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  114. [NT75]
    Nemhauser, G., Trotter Jr., L.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  115. [PY97]
    Papadimitriou, C., Yannakakis, M.: On the Complexity of Database Queries. In: Proc. ACM Symp. on Principles of Database Systems, pp. 12–19 (1997); Journal version in Journal of Computer System Sciences 58, 407–427 (1999)Google Scholar
  116. [ST98]
    Shamir, R., Tzur, D.: The Maximum Subforest Problem: Approximation and Exact Algorithms. In: Proc. ACM Symposium on Discrete Algorithms, pp. 394–399. ACM Press (1998)Google Scholar
  117. [St00]
    Stege, U.: Resolving Conflicts in Problems in Computational Biochemistry. Ph.D. dissertation, ETH (2000)Google Scholar
  118. [St12]
    Stege, U.: The Impact of Parameterized Complexity to Interdisciplinary Problem Solving. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 56–68. Springer, Heidelberg (2012)Google Scholar
  119. [RSV04]
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32, 299–301 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  120. [RS86a]
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  121. [T12]
    Thilikos, D.: Graph Minors and Parameterized Algorithm Design. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 228–256. Springer, Heidelberg (2012)Google Scholar
  122. [Wa37]
    Wagner, K.: Uber einer eigenshaft der eberner complexe. Math. Ann. 14, 570–590 (1937)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rod Downey
    • 1
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand

Personalised recommendations