Advertisement

Continuous ASM, and a Pacemaker Sensing Fragment

  • Richard Banach
  • Huibiao Zhu
  • Wen Su
  • Xiaofeng Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7316)

Abstract

The ASM framework is extended to include continuously varying quantities as well as conventional discretely changing ones. This opens the door to the more faithful modeling of many scenarios where digital systems have to interact with the continuously varying physical world. Transitions in the extended framework are thus either moded (for discontinuous changing quantities), or pliant (for smoothly changing quantities). Refinement and retrenchment are defined in the extended context. The framework is used to develop a fragment of a simple system for the sensing problem for cardiac pacemakers, in the context of the pacemaker verification challenge.

Keywords

Mode Transition Grand Challenge Concrete State Software Engineer Institute Normal Heartbeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996)Google Scholar
  2. 2.
    Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)Google Scholar
  3. 3.
    Aubert, A., Goldreyer, B., Wyman, M., Jaquemlyn, E., Ector, H., de Geest, H.: Filter Characteristics of the Atrial Sensing Circuit of a Rate Responsive Pacemaker. To See or Not to See. PACE 12, 525–536 (1989)CrossRefGoogle Scholar
  4. 4.
    Banach, R.: Model Based Refinement and the Design of Retrenchments. Available from [18]Google Scholar
  5. 5.
    Banach, R., Jeske, C., Poppleton, M.: Composition Mechanisms for Retrenchment. J. Log. Alg. Prog. 75, 209–229 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and Theoretical Underpinnings of Retrenchment. Sci. Comp. Prog. 67, 301–329 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Barold, S., Stroobandt, R., Sinnaeve, A.: Cardiac Pacemakers and Resynchronization Step by Step: An Illustrated Guide. Wiley-Blackwell (2010)Google Scholar
  8. 8.
    Börger, E.: The ASM Refinement Method. FACJ 15, 237–257 (2003)zbMATHGoogle Scholar
  9. 9.
    Börger, E., Stärk, R.: Abstract State Machines. A Method for High Level System Design and Analysis. Springer (2003)Google Scholar
  10. 10.
    Boston Scientific: PACEMAKER System Specification (2007), http://www.cas.mcmaster.ca/sqrl/_SQRLDocuments/PACEMAKER.pdf
  11. 11.
    Ellenbogen, K., Wood, M.: Cardiac Pacing and ICDs, 5th edn. Wiley-Blackwell (2008)Google Scholar
  12. 12.
    Gomes, A.O., Oliveira, M.V.M.: Formal Specification of a Cardiac Pacing System. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Jones, C., O’Hearne, P., Woodcock, J.: Verified Software: A Grand Challenge. IEEE Computer 39, 93–95 (2006)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Keinert, M., Elmqvist, H., Strandberg, H.: Spectral Properties of Atrial and Ventricular Endocardial Signals. PACE 2, 11–19 (1979)CrossRefGoogle Scholar
  16. 16.
    Macedo, H.D., Larsen, P.G., Fitzgerald, J.: Incremental Development of a Distributed Real-Time Model of a Cardiac Pacing System Using VDM. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Méry, D., Singh, N.: Functional Behavior of a Cardiac Pacing System. Tech. rep., LORIA, Université Henri Poincaré - Nancy I (2011), http://www.loria.fr/~singhnne/Home_files/downloads/ijdecs2010.pdf, Int. J. Discrete Event Control Systems
  18. 18.
    Retrenchment Homepage, http://www.cs.man.ac.uk/retrenchment
  19. 19.
    Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Simulation. JUCS 7, 952–979 (2001)MathSciNetGoogle Scholar
  20. 20.
    Schellhorn, G.: ASM Refinement and Generalizations of Forward Simulation in Data Refinement: A Comparison. Theor. Comp. Sci. 336, 403–435 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Schuchert, A., Aydin, A., Israel, C., Gaby, G., Paul, V.: Arial Pacing and Sensing Characteristics in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy. Europace 7, 165–169 (2005)CrossRefGoogle Scholar
  22. 22.
    Wilson, F., Macleod, A., Barker, P.: The Distribution of the Action Currents Produced by Heart Muscle and Other Excitable Tissues Immersed in Extensive Conducting Media. J. Gen. Physiol. 16, 423–456 (1933)CrossRefGoogle Scholar
  23. 23.
    Wilson, F., Macleod, A., Barker, P.: The Distribution of the Currents of Action and of Injury Displayed by Heart Muscle and Other Excitable Tissues. University of Michigan Studies. Scientific Series, vol. 10. University of Michigan Press, Ann Arbor (1933); Reprinted in: Lepeschkin, Johnston (eds.) Selected Papers of Wilson, F.N., Edwards, J.W.: Ann Arbor (1954)Google Scholar
  24. 24.
    Woodcock, J.: First Steps in the The Verified Software Grand Challenge. IEEE Computer 39, 57–64 (2006)CrossRefGoogle Scholar
  25. 25.
    Woodcock, J., Banach, R.: The Verification Grand Challenge. JUCS 13, 661–668 (2007)Google Scholar
  26. 26.
    Woodcock, J., Davies, J.: Using Z, Specification, Refinement and Proof. Prentice Hall (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Richard Banach
    • 1
  • Huibiao Zhu
    • 2
  • Wen Su
    • 2
  • Xiaofeng Wu
    • 2
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterU.K.
  2. 2.Software Engineering InstituteEast China Normal UniversityShanghaiP.R. China

Personalised recommendations