On the Road to Thinking Machines: Insights and Ideas

  • Jiří Wiedermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

The quest for understanding the working of artificial minds attaining a human-like cognition is culminating. While still inspired by the functionality of biological brains, the realization of thinking machines need not slavishly copy the principles used by their living pendants. Achieving a higher-level artificial intelligence no longer seems to be a matter of a fundamental scientific breakthrough but rather a matter of exploiting our best algorithmic theories of thinking machines supported by our most advanced robotic and real time data processing technologies. We review recent examples of such theories, ideas and machines which could pave the road towards building interesting artificial brains.

Keywords

Cognitive System Mirror Neuron Phenomenal Consciousness Turing Test Imitation Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbib, M.A.: The mirror system hypothesis: how did protolanguage evolve? In: Tallerman, M. (ed.) Language Origins: Perspectives on Evolution. Oxford University Press (2005)Google Scholar
  2. 2.
    Baars, B.J.: A cognitive theory of consciousness. Cambridge University Press, Cambridge (1988)Google Scholar
  3. 3.
    Baars, B.J.: In the theater of consciousness: The workspace of the mind. Oxford University Press, Oxford (1997)CrossRefGoogle Scholar
  4. 4.
    Block, N.: On a Confusion About a Function of Consciousness. Brain and Behavioral Sciences 18, 227–247 (1995)CrossRefGoogle Scholar
  5. 5.
    Chalmers, D.: Facing Up To the Problem of Consciousness. Journal of Consciousness Studies 2(3), 200–219 (1995)MathSciNetGoogle Scholar
  6. 6.
    Cruse, H.: The evolution of cognition—a hypothesis. Cognitive Science 27(1) (2003)Google Scholar
  7. 7.
    Dennett, D.: Consciousness Explained. The Penguin Press (1991)Google Scholar
  8. 8.
    Ferrucci, D., et al.: Building Watson: An Overview DeepQA Project. AI Magazine, 200–214 (Fall 2010)Google Scholar
  9. 9.
    Franklin, S.: IDA: A conscious artifact? J. of Consciousness Studies 10(4-5), 47–66 (2003)MathSciNetGoogle Scholar
  10. 10.
    Feldman, J.: From Molecule to Metaphor. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Harnad, S.: The symbol grounding problem. Physica D (42), 335–346 (1990)Google Scholar
  12. 12.
    Harvey, I.: Evolving Robot Consciousness: The Easy Problems and the Rest. In: Fetzer, J.H. (ed.) Evolving Consciousness. Advances in Consciousness Research Series, pp. 205–219. John Benjamins, Amsterdam (2002)Google Scholar
  13. 13.
    Holland, O., Goodman, R.: Robots with internal models: a route to machine consciousness? Journal of Consciousness Studies 10(4-5) (2003)Google Scholar
  14. 14.
    Hurford, J.R.: Language beyond our grasp: what mirror neurons can, and cannot, do for language evolution. In: Kimbrough, O., Griebel, U., Plunkett, K. (eds.) The Evolution of Communication systems: A Comparative Approach. The Viennna Series in Theoretical Biology. MIT Press, Cambridge (2002)Google Scholar
  15. 15.
    Hume, D.: Enquiry concerning human understanding. In: Selby-Bigge, L.A. (ed.) Enquiries Concerning Human Understanding and Concerning the Principles of Morals, 3rd edn. Clarendon Press, Oxford (2003), revised by Nidditch, P.H.Google Scholar
  16. 16.
    Kurzweil, R.: The Singularity is Near, p. 652. Viking Books (2005)Google Scholar
  17. 17.
    Llinàs, R.: I of the Vortex: From Neurons to Self. MIT Press (2001)Google Scholar
  18. 18.
    Neal, D.: The Pull of the Past: When Do Habits Persist Despite Conflict With Motives? Pers. Soc. Psychol. Bull. 37, 1428–1437 (2011)CrossRefGoogle Scholar
  19. 19.
    Nuxoll, A.M., Laird, J.E.: Extending Cognitive Architecture with Episodic Memory. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence. AAAI Press, Vancouver (2007)Google Scholar
  20. 20.
    Kevin O’Regan, J.: How to Build Consciousness into a Robot: The Sensorimotor Approach. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 332–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)Google Scholar
  22. 22.
    Pfeifer, R., Bongard, J.: How the body shapes the way we think: a new view of intelligence. MIT Press (2006)Google Scholar
  23. 23.
    Ramachandran, V.S.: Mirror neurons and imitation as the driving force behind ‘the great leap forward’ in human evolution. EDGE: The third culture (2000), http://www.edge.org/3rd_culture/ramachandran/ramachandran_p1.html
  24. 24.
    Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, I.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)CrossRefGoogle Scholar
  25. 25.
    Shanahan, M.P.: Consciousness, emotion, and imagination: a brain-inspired architecture for cognitive robotics. In: Proceedings AISB 2005 Symposium on Next Generation Approaches to Machine Consciousness, pp. 26–35 (2005)Google Scholar
  26. 26.
    Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Valiant, L.G.: Circuits of the mind. Oxford University Press, New York (1994)MATHGoogle Scholar
  28. 28.
    Wiedermann, J.: Towards Algorithmic Explanation of Mind Evolution and Functioning (Extended Abstract). In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 152–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Wiedermann, J.: Mirror neurons, embodied cognitive agents and imitation learning. Computing and Informatics 22(6), 545–559 (2003)MATHGoogle Scholar
  30. 30.
    Wiedermann, J.: HUGO: A Cognitive Architecture with an Incorporated World Model. In: Proc. of the European Conference on Complex Systems ECCS 2006, Said Business School. Oxford University (2006)Google Scholar
  31. 31.
    Wiedermann, J.: A high level model of a conscious embodied agent. In: Proc. of the 8th IEEE International Conference on Cognitive Informatics, pp. 448–456 (2010); expanded version appeared in: International Journal of Software Science and Computational Intelligence (IJSSCI) 2(3), 62–78 (2010)Google Scholar
  32. 32.
    Wiedermann, J.: A Computability Argument Against Superintelligence. In: Cognitive Computation, February 18. Springer (2012)Google Scholar
  33. 33.
    Wiedermann, J.: Towards Computational Models of Artificial Cognitive Systems That Can, in Principle, Pass the Turing Test*. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 44–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Zimmer, C.: The Brain: Memories Are Crucial for Looking Into the Future. DISCOVER Magazine (April 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiří Wiedermann
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations