Abstract
In a manuscript entitled “A note on normal numbers” and written presumably in 1938 Alan Turing gave an algorithm that produces real numbers normal to every integer base. This proves, for the first time, the existence of computable normal numbers and it is the best solution to date to Borel’s problem on giving examples of normal numbers. Furthermore, Turing’s work is pioneering in the theory of randomness that emerged 30 years after. These achievements of Turing are largely unknown because his manuscript remained unpublished until its inclusion in his Collected Works in 1992. The present note highlights Turing’s ideas for the construction of normal numbers. Turing’s theorems are included with a reconstruction of the original proofs.
Keywords
- Initial Segment
- Unit Interval
- Block Length
- Computable Function
- Output Sequence
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Becher, V., Figueira, S., Picchi, R.: Turing’s unpublished algorithm for normal numbers. Theoretical Computer Science 377, 126–138 (2007)
Becher, V., Figueira, S.: An example of a computable absolutely normal number. Theoretical Computer Science 270, 947–958 (2002)
Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)
Borel, É.: Leçons sur la thèorie des fonctions, 2nd edn., Gauthier Villars (1914)
Bugeaud, Y.: Nombres de Liouville et nombres normaux. Comptes Rendus de l’Académie des Sciences de Paris 335, 117–120 (2002)
Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Cambridge University Press (2012)
Bourke, C., Hitchcock, J., Vinodchandran, N.: Entropy rates and finite-state dimension. Theoretical Computer Science 349(3), 392–406 (2005)
Chaitin, G.: A theory of program size formally identical to information theory. Journal ACM 22, 329–340 (1975)
Cassels, J.W.S.: On a paper of Niven and Zuckerman. Pacific Journal of Mathematics 2, 555–557 (1952)
Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)
Downey, R.: Randomness, Computation and Mathematics. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 163–182. Springer, Heidelberg (2012)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 1st edn. Oxford University Press (1938)
Harman, G.: Metric Number Theory. Oxford University Press (1998)
Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal on Computing 31(1), 199–211 (2001)
Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Dover (2006)
Lebesgue, H.: Sur certaines démonstrations d’existence. Bulletin de la Société Mathématique de France 45, 132–144 (1917)
Levin, M.B.: On absolutely normal numbers. English translation in Moscow University Mathematics Bulletin 34, 32–39 (1979)
Dai, L., Lutz, J., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)
Martin-Löf, P.: The Definition of Random Sequences. Information and Control 9(6), 602–619 (1966)
Nies, A.: Computability and Randomness. Oxford University Press (2009)
Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit. In: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)
Schnorr, C.-P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1, 345–359 (1972)
Sierpiński, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre. Bulletin de la Société Mathématique de France 45, 127–132 (1917)
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society Series 2 42, 230–265 (1936)
Turing, A.M.: A note on normal numbers. In: Britton, J.L. (ed.) Collected Works of A.M. Turing: Pure Mathematics, pp. 263–265. North Holland, Amsterdam (1992); with notes of the editor in 263–265
Schmidt, W.M.: On normal numbers. Pacific Journal of Math. 10, 661–672 (1960)
Strauss, M.: Normal numbers and sources for BPP. Theoretical Computer Science 178, 155–169 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Becher, V. (2012). Turing’s Normal Numbers: Towards Randomness. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-30870-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30869-7
Online ISBN: 978-3-642-30870-3
eBook Packages: Computer ScienceComputer Science (R0)