Existence of Faster than Light Signals Implies Hypercomputation already in Special Relativity

  • Péter Németi
  • Gergely Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)


Within an axiomatic framework, we investigate the possibility of hypercomputation in special relativity via faster than light signals. We formally show that hypercomputation is theoretically possible in special relativity if and only if there are faster than light signals.


Special Relativity Turing Machine Light Signal Coordinate Point Logic Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Madarász, J.X., Németi, I., Székely, G.: A logic road from special relativity to general relativity. Synthese, 1–17 (2011) (online-first)Google Scholar
  2. 2.
    Andréka, H., Madarász, J.X., Németi, I., Székely, G.: What are the numbers in which spacetime? (2012), arXiv:1204.1350Google Scholar
  3. 3.
    Andréka, H., Németi, I., Németi, P.: General relativistic hypercomputing and foundation of mathematics. Nat. Comput. 8(3), 499–516 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dávid, G., Németi, I.: Relativistic computers and the Turing barrier. Appl. Math. Comput. 178(1), 118–142 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    d’Inverno, R.: Introducing Einstein’s relativity. Oxford University Press, New York (1992)zbMATHGoogle Scholar
  6. 6.
    Earman, J., Norton, J.D.: Forever is a day: supertasks in Pitowsky and Malament–Hogarth spacetimes. Philos. Sci. 60(1), 22–42 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Etesi, G., Németi, I.: Non-Turing computations via Malament–Hogarth space-times. Internat. J. Theoret. Phys. 41(2), 341–370 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Friedman, M.: Foundations of Space-Time Theories. Relativistic Physics and Philosophy of Science. Princeton University Press, Princeton (1983)Google Scholar
  9. 9.
    Hogarth, M.L.: Does general relativity allow an observer to view an eternity in a finite time? Found. Phys. Lett. 5(2), 173–181 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Madarász, J.X.: Logic and Relativity (in the light of definability theory). Ph.D. thesis, Eötvös Loránd Univ., Budapest (2002),
  11. 11.
    Madarász, J.X., Németi, I., Székely, G.: Twin paradox and the logical foundation of relativity theory. Found. Phys. 36(5), 681–714 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Manchak, J.B.: On the possibility of supertasks in general relativity. Found. Phys. 40(3), 276–288 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Matolcsi, T., Rodrigues Jr., W.A.: The geometry of space-time with superluminal phenomena. Algebras Groups Geom. 14(1), 1–16 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Co., San Francisco (1973)Google Scholar
  15. 15.
    Mittelstaedt, P.: What if there are superluminal signals? The European Physical Journal B - Condensed Matter and Complex Systems 13, 353–355 (2000)CrossRefGoogle Scholar
  16. 16.
    Németi, P., Székely, G.: Special relativistic hypercomputation is possible if there are faster than light signals (2012) (preprint version); arXiv:1204.1773 Google Scholar
  17. 17.
    OPERA collaboration: Measurement of the neutrino velocity with the OPERA detector in the CNGS beam (2011), arXiv:1109.4897Google Scholar
  18. 18.
    Petkov, V.: Relativity and the nature of spacetime, 2nd edn. Frontiers Collection. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Recami, E.: Tachyon kinematics and causality: a systematic thorough analysis of the tachyon causal paradoxes. Found. Phys. 17(3), 239–296 (1987)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Recami, E.: Superluminal motions? A bird’s-eye view of the experimental situation. Found. Phys. 31, 1119–1135 (2001)CrossRefGoogle Scholar
  21. 21.
    Recami, E., Fontana, F., Garavaglia, R.: Special relativity and superluminal motions: a discussion of some recent experiments. Internat. J. Modern Phys. A 15(18), 2793–2812 (2000)MathSciNetGoogle Scholar
  22. 22.
    Rindler, W.: Relativity. Special, general, and cosmological, 2nd edn. Oxford University Press, New York (2006)Google Scholar
  23. 23.
    Selleri, F.: Superluminal signals and the resolution of the causal paradox. Found. Phys. 36, 443–463 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stannett, M.: The case for hypercomputation. Appl. Math. Comput. 178(1), 8–24 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Székely, G.: First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers. Ph.D. thesis, Eötvös Loránd Univ., Budapest (2009)Google Scholar
  26. 26.
    Székely, G.: The existence of superluminal particles is consistent with the kinematics of Einstein’s special theory of relativity (2012), arXiv:1202.5790Google Scholar
  27. 27.
    Taylor, E.F., Wheeler, J.A.: Spacetime Physics. W. H. Freeman and Company, New York (1997)Google Scholar
  28. 28.
    Tolman, R.C.: The Theory of the Relativity of Motion. University of California, Berkely (1917)zbMATHGoogle Scholar
  29. 29.
    Weinstein, S.: Super luminal signaling and relativity. Synthese 148, 381–399 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Péter Németi
    • 1
  • Gergely Székely
    • 1
  1. 1.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations