Advertisement

Unifiability and Admissibility in Finite Algebras

  • George Metcalfe
  • Christoph Röthlisberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

Unifiability of finite sets of equations and admissibility of quasiequations in finite algebras are decidable problems, but a naive approach is computationally unfeasible even for small algebras. Algorithms are given here for obtaining more efficient proof systems deciding these problems, and some applications of the algorithms are described.

Keywords

Proof System Homomorphic Image Free Algebra Zero Generator Finite Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods in Computer Science 6(3) (2010)Google Scholar
  2. 2.
    Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning, vol. I, ch. 8, pp. 447–533. Elsevier (2001)Google Scholar
  3. 3.
    Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued logics. In: Handbook of Automated Reasoning, vol. II, ch.20, pp. 1355–1402. Elsevier Science B.V. (2001)Google Scholar
  4. 4.
    Babenyshev, S., Rybakov, V., Schmidt, R.A., Tishkovsky, D.: A tableau method for checking rule admissibility in S4. In: Proceedings of UNIF 2009. ENTCS, vol. 262, pp. 17–32 (2010)Google Scholar
  5. 5.
    Beckert, B., Hähnle, R., Oel, P., Sulzmann, M.: The Tableau-Based Theorem Prover 3 T A P, Version 4.0. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 303–307. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, New York (1981)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cintula, P., Metcalfe, G.: Structural completeness in fuzzy logics. Notre Dame Journal of Formal Logic 50(2), 153–183 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cintula, P., Metcalfe, G.: Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of Pure and Applied Logic 162(10), 162–171 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ghilardi, S.: Unification in intuitionistic logic. Journal of Symbolic Logic 64(2), 859–880 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ghilardi, S.: Best solving modal equations. Annals of Pure and Applied Logic 102(3), 184–198 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghilardi, S.: A resolution/tableaux algorithm for projective approximations in IPC. Logic Journal of the IGPL 10(3), 227–241 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gil, A.J., Salzer, G.: Homepage of MUltseq, http://www.logic.at/multseq
  13. 13.
    Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Springer (1998)Google Scholar
  14. 14.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. OUP (1993)Google Scholar
  15. 15.
    Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. Journal of Symbolic Logic 66(1), 281–294 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Annals of Pure and Applied Logic 159(1-2), 171–186 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jeřábek, E.: Admissible rules of modal logics. Journal of Logic and Computation 15, 411–431 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jeřábek, E.: Admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(2), 425–447 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Jeřábek, E.: Bases of admissible rules of Łukasiewicz logic. Journal of Logic and Computation 20(6), 1149–1163 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Metcalfe, G., Röthlisberger, C.: Admissibility in De Morgan algebras. Soft Computing (February 2012)Google Scholar
  21. 21.
    Olson, J.S., Raftery, J.G.: Positive Sugihara monoids. Algebra Universalis 57, 75–99 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rybakov, V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier, Amsterdam (1997)zbMATHCrossRefGoogle Scholar
  23. 23.
    Salzer, G.: Homepage of MUltlog, http://www.logic.at/multlog
  24. 24.
    Sofronie-Stokkermans, V.: On unification for bounded distributive lattices. ACM Transactions on Computational Logic 8(2) (2007)Google Scholar
  25. 25.
    Sprenger, M.: Algebra Workbench. Homepage, http://www.algebraworkbench.net
  26. 26.
    Zach, R.: Proof theory of finite-valued logics. Master’s thesis, Technische Universität Wien (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • George Metcalfe
    • 1
  • Christoph Röthlisberger
    • 1
  1. 1.Mathematics InstituteUniversity of BernBernSwitzerland

Personalised recommendations