What is Turing’s Comparison between Mechanism and Writing Worth?

  • Jean Lassègue
  • Giuseppe Longo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

In one of the many and fundamental side-remarks made by Turing in his 1950 paper (The Imitation Game paper), an analogy is made between Mechanism and Writing. Turing is aware that his Machine is a writing/re-writing mechanism, but he doesn’t go deeper into the comparison. Striding along the history of writing, we shall hint here at the nature and the role of alphabetic writing in the invention of Turing’s (and today’s) notion of computability. We shall stress that computing is a matter of alphabetic sequence checking and replacement, far away from the physical world, yet related to it once the role of physical measurement is taken into account. Turing Morphogenesis paper, 1952, provides the guidelines for the modern analysis of “continuous dynamics” at the core Turing’s late and innovative approach to bio-physical processes.

Keywords

Computable Function Combinatory Logic Double Pendulum Lambda Calculus Alphabetic Writing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Longo, G.: Categories, Types and Structures; Category Theory for the working computer scientist. M.I.T. Press (1991)Google Scholar
  2. 2.
    Bailly G, Longo G.: Mathematics and Natural Sciences: the Physical Singularity of Life. Imperial Coll. Press, London (2011)Google Scholar
  3. 3.
    Barendregt, H.: The Lambda Calculus: its syntax and semantics. North Holland, Amsterdam (1984)MATHGoogle Scholar
  4. 4.
    Braverman, M., Yampolski, M.: Non-computable Julia sets. Journ. Amer. Math. Soc. 19, 551–578 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Bezem, M., Klop, J.W., Roel de Vrijer, R.: Term Rewriting Systems. Cambridge Univ. Press, Cambridge (2003)MATHGoogle Scholar
  6. 6.
    Church, A.: A set of postulates for the foundation of Logic. Annals of Math. 33(2), 346–366, 34, 37–54 (1932-1933)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Church, A.: A formalisation of the simple theory of types. JSL 5, 56–58 (1940)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Curry, H.B., Feys, E.: Combinatory Logic, vol. I. North-Holland, Amsterdam (1968)MATHGoogle Scholar
  9. 9.
    Curry, H.B., Hindley, J.R., Seldin, J.: Combinatory Logic, vol. II. North-Holland, Amsterdam (1972)MATHGoogle Scholar
  10. 10.
    Herrenschmidt, C.: Les trois écritures; langue, nombre, code. Gallimard, Paris (2007)Google Scholar
  11. 11.
    Hindley, R.: Basic Simple Type Theory. Cambridge University Press, Cambridge (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Hindley, R., Longo, G.: Lambda-calculus models and extensionality. Zeit. für Mathemathische Logik und Grundlagen der Mathematik 26(2), 289–310 (1980)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kleene, S.C.: Lambda definability and recursiveness. Duke Math. J. 2, 340–353 (1936)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lambek, J., Scott, P.J.: Introduction to higher order Categorial Logic. Cambridge Univ. Press, Cambridge (1986)Google Scholar
  15. 15.
    Lassègue’s page (downloadable articles), http://www.lassegue.net
  16. 16.
    Laskar, J.: Large scale chaos in the Solar System. Astron. Astrophysics 287, L9–L12 (1994)Google Scholar
  17. 17.
    Longo’s page (downloadable articles), http://www.di.ens.fr/users/longo
  18. 18.
    Longo, G.: Set-theoretical models of lambda-calculus: Theories, expansions, isomorphisms. Annals of Pure and Applied Logic 24, 153–188 (1983)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Longo, G., Moggi, E.: A category-theoretic characterization of functional completeness. Theoretical Computer Science 70(2), 193–211 (1990)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Longo, G.: Critique of Computational Reason in the Natural Sciences. In: Gelenbe, E., et al. (eds.) Fundamental Concepts in Computer Science. Imperial College Press, London (2008)Google Scholar
  21. 21.
    Longo G.: Incomputability in Physics and Biology. To appear in MSCS (2012) (see Longo’s web page); Preliminary version: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.): CiE 2010. LNCS, vol. 6158. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Yu, P.S.: Shadowing in dynamical systems. Springer (1999)Google Scholar
  23. 23.
    Pour-El, M.B., Richards, J.I.: Computability in analysis and physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)MATHGoogle Scholar
  24. 24.
    Schmandt-Besserat, D.: How Writing Came About. University of Texas Press, Austin (1992)Google Scholar
  25. 25.
    Schmandt-Besserat, D.: From Tokens to Writing: the Pursuit of Abstraction. Bull. Georg. Natl. Acad. Sci. 175(3), 162–167 (2007)Google Scholar
  26. 26.
    Scott, D.: Continuous lattices. In: Lawvere (ed.) Toposes, Algebraic Geometry and Logic. SLNM, vol. 274, pp. 97–136. Springer, Berlin (1972)CrossRefGoogle Scholar
  27. 27.
    Scott, D.: Data types as lattices. SIAM Journal of Computing 5, 522–587 (1976)MATHCrossRefGoogle Scholar
  28. 28.
    Turing, A.M.: Computing Machinery and Intelligence. Mind LIX, 433–460 (1950)Google Scholar
  29. 29.
    Turing, A.M.: The Chemical Basis of Morphogenesis. Philo. Trans. Royal Soc. B 237, 37–72 (1952)CrossRefGoogle Scholar
  30. 30.
    Weihrauch, K.: Computable analysis. Springer, Berlin (2000)MATHCrossRefGoogle Scholar
  31. 31.
    Weihrauch, K., Zhong, N.: Is wave equation computable or computers can beat the Turing Machine? Proc. London Math. Soc. 85(3), 312–332 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean Lassègue
    • 1
  • Giuseppe Longo
    • 2
  1. 1.Centre de Recherche en Épistémologie Appliquée (CREA)École PolytechniqueParisFrance
  2. 2.Centre International de Recherches en Philosophie, Lettres, Savoirs (CIRPHLES), Département de philosophieÉcole Normale SupérieureParisFrance

Personalised recommendations