Advertisement

Towards a Theory of Infinite Time Blum-Shub-Smale Machines

  • Peter Koepke
  • Benjamin Seyfferth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

We introduce a generalization of Blum-Shub-Smale machines on the standard real numbers ℝ that is allowed to run for a transfinite ordinal number of steps before terminating. At limit times, register contents are set to the ordinary limit of previous register contents in ℝ. It is shown that each such machine halts before time ω ω or diverges. We undertake first steps towards estimating the computational strength of these new machines.

Keywords

Turing Machine Register Content Computation Node Binary Digit Branch Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21(1), 1–46 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brattka, V.: The emperors new recursiveness: The epigraph of the exponential funciton in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words, Languages and Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore (2003)CrossRefGoogle Scholar
  3. 3.
    Carl, M., Fischbach, T., Koepke, P., Miller, R., Nasfi, M., Weckbecker, G.: The basic theory of infinite time register machines. Archive for Mathematical Logic 49(2), 249–273 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hamkins, J.D., Lewis, A.: Infinite time Turing machines. The Journal of Symbolic Logic 65(2), 567–604 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Koepke, P.: Turing computations on ordinals. The Bulletin of Symbolic Logic 11, 377–397 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    Koepke, P.: Infinite Time Register Machines. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Koepke, P., Miller, R.: An Enhanced Theory of Infinite Time Register Machines. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 306–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Weihrauch, K.: Computable analysis. An Introduction. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Koepke
    • 1
  • Benjamin Seyfferth
    • 1
  1. 1.Mathematisches InstitutRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations