Advertisement

Word Automaticity of Tree Automatic Scattered Linear Orderings Is Decidable

  • Martin Huschenbett
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

A tree automatic structure is a structure whose domain can be encoded by a regular tree language such that each relation is recognisable by a finite automaton processing tuples of trees synchronously. Words can be regarded as specific simple trees and a structure is word automatic if it is encodable using only these trees. The question naturally arises whether a given tree automatic structure is already word automatic. We prove that this problem is decidable for tree automatic scattered linear orderings. Moreover, we show that in case of a positive answer a word automatic presentation is computable from the tree automatic presentation.

Keywords

Isomorphism Problem Tree Automaton Tree Language Automatic Structure Tree Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, V., Grädel, E., Rubin, S.: Automata-based presentations of infinite structures. In: Esparza, J., Michaux, C., Steinhorn, C. (eds.) Finite and Algorithmic Model Theory, pp. 1–76. Cambridge University Press (2011)Google Scholar
  2. 2.
    Blumensath, A.: Automatic structures. Diploma thesis, RWTH Aachen (1999)Google Scholar
  3. 3.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 1–68. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Transactions on Computional Logic 6(4), 675–700 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14(2), 169–209 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 384–455. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Huschenbett
    • 1
  1. 1.Fakultät Informatik und Automatisierung, Fachgebiet Theoretische InformatikTechnische Universität IlmenauPostfachGermany

Personalised recommendations