Advertisement

Densities and Entropies in Cellular Automata

  • Pierre Guillon
  • Charalampos Zinoviadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

Keywords

Cellular Automaton Topological Entropy Horizontal Slice Computable Sequence Consecutive Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Čulik II, K., Hurd, L.P., Kari, J.: The topological entropy of cellular automata is uncomputable. Ergodic Theory & Dynamical Systems 12(2), 255–265 (1992)zbMATHGoogle Scholar
  2. 2.
    Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications (September 2010), draftGoogle Scholar
  3. 3.
    Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical Physics 102(1-2), 45–267 (2001), http://www.cs.bu.edu/fac/gacs/recent-publ.html CrossRefGoogle Scholar
  4. 4.
    Guillon, P., Zinoviadis, C.: Densities and entropies in cellular automata (2012), arXiv:1204.0949Google Scholar
  5. 5.
    Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones Mathematicæ 176(1), 131–167 (2009), http://www.springerlink.com/content/h66428l759545081 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hochman, M.: Expansive directions for \(\mathbb{z}\) actions. Ergodic Theory & Dynamical Systems 31(1), 91–112 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Annals of Mathematics 171(3), 2011–2038 (2010), http://pjm.math.berkeley.edu/annals/ta/080814-Hochman/080814-Hochman-v1.pdf MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM Journal on Computing 21(3), 571–586 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Milnor, J.: On the entropy geometry of cellular automata. Complex Systems 2(3), 357–385 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. Journal d’analyse mathématique 53, 139–186 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Park, K.K.: Entropy of a skew product with a \(\mathbb{z}^2\) -action. Pacific Journal of Mathematics 172(1), 227–241 (1996), http://projecteuclid.org/euclid.pjm/1102366193 MathSciNetzbMATHGoogle Scholar
  12. 12.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicæ 12(3) (1971)Google Scholar
  13. 13.
    Simonsen, J.G.: On the computability of the topological entropy of subshifts. Discrete Mathematics & Theoretical Computer Science 8, 83–96 (2006), www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/download/456/1602 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zheng, X., Weihrauch, K.: The Arithmetical Hierarchy of Real Numbers. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 23–33. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pierre Guillon
    • 1
    • 2
  • Charalampos Zinoviadis
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.CNRS & Institut de Mathématiques de LuminyMarseille cedex 9France

Personalised recommendations