Skip to main content

Randomness, Computation and Mathematics

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

This article examines some of the recent advances in our understanding of algorithmic randomness. It also discusses connections with various areas of mathematics, computer science and other areas of science. Some questions and speculations will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, A.A., Calude, C.S., Svozil, K.: Incomputability of quantum physics (in preparation)

    Google Scholar 

  2. Allender, E., Friedman, L., Gasarch, W.: Limits on the Computational Power of Random Strings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 293–304. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from Random Strings. SIAM J. Comp. 35, 1467–1493 (2006)

    Article  MATH  Google Scholar 

  4. Allender, E., Buhrman, H., Koucký, M.: What Can be Efficiently Reduced to the Kolmogorov-Random Strings? Annals of Pure and Applied Logic 138, 2–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Athreya, K., Hitchcock, J., Lutz, J., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM Jour. Comput. 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Avigad, J.: The metamathematics of ergodic theory. Annals of Pure and Applied Logic 157, 64–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barmpalias, G., Lewis, A., Ng, K.M.: The importance of \({\Pi^0_1}\) classes in effective randomness. JSL 75(1), 387–400 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Becher, V.: Turing’s Normal Numbers: Towards Randomness. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 35–45. Springer, Heidelberg (2012)

    Google Scholar 

  9. Becher, V., Grigorieff, S.: From index sets to randomness in ∅ n, Random reals and possibly infinite computations. Journal of Symbolic Logic 74(1), 124–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bienvenu, L., Downey, R.: Kolmogorov complexity and Solovay functions. In: STACS 2009, pp. 147–158 (2009)

    Google Scholar 

  11. Bienvenu, L., Merkle, W.: Reconciling Data Compression and Kolmogorov Complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 643–654. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited. In: STACS 2008 (2008)

    Google Scholar 

  13. Bienvenu, L., Day, A., Hoyrup, M., Mezhirov, I., Shen, A.: Ergodic-type characterizations of algorithmic randomness. To appear in Information and Computation

    Google Scholar 

  14. Bertrand, J.: Calcul des Probabilités (1889)

    Google Scholar 

  15. Brattka, V., Miller, J., Nies, A.: Randomness and differentiability (to appear)

    Google Scholar 

  16. Braverman, M., Yampolsky, M.: Non-Computable Julia Sets. Journ. Amer. Math. Soc. 19(3) (2006)

    Google Scholar 

  17. Braverman, M., Yampolsky, M.: Computability of Julia Sets. Springer (2008)

    Google Scholar 

  18. Calude, C., Svozil, K.: Quantum randomness and value indefiniteness. Advanced Science Letters 1, 165–168 (2008)

    Article  Google Scholar 

  19. Chaitin, G.: A theory of program size formally identical to information theory. Journal of the ACM 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cholak, P., Downey, R., Greenberg, N.: Strong-jump traceablilty. I. The computably enumerable case. Advances in Mathematics 217, 2045–2074 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Church, A.: On the concept of a random sequence. Bulletin of the American Mathematical Society 46, 130–135 (1940)

    Article  MathSciNet  Google Scholar 

  22. Cilibrasi, R., Vitanyi, P.M.B., de Wolf, R.: Algorithmic clustering of music based on string compression. Computer Music J. 28(4), 49–67 (2004)

    Article  Google Scholar 

  23. Day, A.: Increasing the gap between descriptional complexity and algorithmic probability. Transactions of the American Mathematical Society 363, 5577–5604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata studies. Annals of Mathematics Studies, vol. 34, pp. 183–212. Princeton University Press, Princeton (1956)

    Google Scholar 

  25. Demuth, O.: The differentiability of constructive functions of weakly bounded variation on pseude-numbers. Comment. Math. Univ. Carolina. 16, 583–599 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Downey, R.: Five Lectures on Algorithmic Randomness. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) Computational Prospects of Infinity, Part I: Tutorials. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 14, pp. 3–82. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  27. Downey, R.: Algorithmic randomness and computability. In: Proceedings of the 2006 International Congress of Mathematicians, vol. 2, pp. 1–26. European Mathematical Society (2006)

    Google Scholar 

  28. Downey, R., Greenberg, N.: Pseudo-jump operators and SJTHard sets (submitted)

    Google Scholar 

  29. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)

    Google Scholar 

  30. Downey, R., Hirschfeldt, D., Nies, A., Terwijn, S.: Calibrating randomness. Bulletin Symbolic Logic 12, 411–491 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fouche, W.: The descriptive complexity of Brownian motion. Advances in Mathematics 155, 317–343 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fouche, W.: Dynamics of a generic Brownian motion: Recursive aspects. Theoretical Computer Science 394, 175–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Franklin, J., Greenberg, N., Miller, J., Ng, K.M.: Martin-Loef random points satisfy Birkhoff’s ergodic theorem for effectively closed sets. Proc. Amer. Math. Soc. (to appear)

    Google Scholar 

  34. Fuchs, H., Schnorr, C.: Monte Carlo methods and patternless sequences. In: Operations Research Verfahren, Symp., Heidelberg, vol. XXV, pp. 443–450 (1977)

    Google Scholar 

  35. Gács, P.: On the relation between descriptional complexity and algorithmic probability. Theoretical Computer Science 22, 71–93 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gács, P.: Every set is reducible to a random one. Information and Control 70, 186–192 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gács, P., Hoyrup, M., Rojas, C.: Randomness on computable probability spaces, a dynamical point of view. Theory of Computing Systems 48(3), 465–485 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gregorieff, S., Ferbus, M.: Is Randomness native to Computer Science? Ten years after. In: [78], pp. 243–263 (2011)

    Google Scholar 

  39. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Annals of Mathematics 171(3), 2011–2038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hölzl, R., Kräling, T., Merkle, W.: Time-Bounded Kolmogorov Complexity and Solovay Functions. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 392–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  41. Fortnow, L., Lee, T., Vereshchagin, N.K.: Kolmogorov Complexity with Error. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 137–148. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  42. Kjos-Hanssen, B., Nerode, A.: Effective dimension of points visited by Brownian motion. Theoretical Computer Science 410(4-5), 347–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kjos-Hanssen, B., Szabados, T.: Kolmogorov complexity and strong approximation of Brownian motion. Proc. Amer. Math. Soc. 139(9), 3307–3316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–7 (1965)

    Google Scholar 

  45. Kučera, A.: Measure, \({\Pi_1^0}\) classes, and complete extensions of PA. In: Recursion Theory Week, Oberwolfach. Lecture Notes in Mathematics, vol. 1141, pp. 245–259. Springer, Berlin (1984-1985)

    Google Scholar 

  46. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM J. on Comp. 31, 199–211 (2001)

    Article  MATH  Google Scholar 

  47. Kummer, M.: On the Complexity of Random Strings(Extended abstract). In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 25–36. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  48. Levin, L.: Some theorems on the algorithmic approach to probability theory and information theory. Dissertation in Mathematics Moscow University (1971)

    Google Scholar 

  49. Levin, L.: Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission 10, 206–210 (1974)

    Google Scholar 

  50. Lévy, P.: Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars (1937)

    Google Scholar 

  51. Nies, A.: Lowness properties and randomness. Advances in Mathematics 197(1), 274–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nies, A.: Computability and Randomness. Oxford University Press (2009)

    Google Scholar 

  53. Nies, A.: Interactions of computability and randomness. In: Ragunathan, S. (ed.) Proceedings of the International Congress of Mathematicians, pp. 30–57 (2010)

    Google Scholar 

  54. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization, and Turing degrees. JSL 70(2), 515–535 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  56. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Infor. Proc. Lett. 84, 1–3 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Miller, J.: Extracting information is hard: a Turing degree of non-integral effective Hausdorff dimension. Advances in Mathematics 226(1), 373–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Muchnik, A.A., Positselsky, S.P.: Kolmogorov entropy in the context of computability theory. Theor. Comp. Sci. 271, 15–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Muchnik, A.A., Semenov, A., Uspensky, V.: Mathematical metaphysics of randomness. Theor. Comp. Sci. 207(2), 263–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nies, A., Miller, J.: Randomness and computability: Open questions. Bull. Symb. Logic. 12(3), 390–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Poul-El, M., Richards, I.: Computability in Analysis and Physics. Springer (1989)

    Google Scholar 

  62. Reimann, J.: Effectively closed classes of measures and randomness. Annals of Pure and Applied Logic 156(1), 170–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Reimann, J., Slaman, T.: Randomness for continuous measures (to appear), draft available from Reimann’s web site

    Google Scholar 

  64. Schnorr, C.P.: A unified approach to the definition of a random sequence. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)

    Google Scholar 

  66. Simpson, S.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (to appear)

    Google Scholar 

  67. Simpson, S.: Mass Problems Associated with Effectively Closed Sets. Tohoku Mathematical Journal 63(4), 489–517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Simpson, S.: Symbolic Dynamics: Entropy = Dimension = Complexity (2011) (to appear)

    Google Scholar 

  69. Stephan, F.: Martin-Löf random sets and PA-complete sets. In: Logic Colloquium 2002. Lecture Notes in Logic, vol. 27, pp. 342–348. Association for Symbolic Logic (2006)

    Google Scholar 

  70. Turing, A.: On computable numbers with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936); Correction in Proceedings of the London Mathematical Society 43, 544–546 (1937)

    Article  Google Scholar 

  71. Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  72. Vitanyi, P.: Information distance in multiples. IEEE Trans. Inform. 57(4), 2451–2456 (2011)

    Article  MathSciNet  Google Scholar 

  73. Ville, J.: Étude Critique de la Notion de Collectif. Gauthier-Villars (1939)

    Google Scholar 

  74. von Mises, R.: Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z 5, 52–99 (1919)

    Article  MathSciNet  Google Scholar 

  75. von Neumann, J.: Various techniques used in connection with random digits. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.) Monte Carlo Method. National Bureau of Standards Applied Mathematics Series, vol. 12, pp. 36–38 (1951)

    Google Scholar 

  76. Wald, A.: Sur le notion de collectif dans la calcul des probabilitiés. Comptes Rendes des Seances de l’Académie des Sciences 202, 1080–1083 (1936)

    Google Scholar 

  77. Wald, A.: Die Weiderspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung. Ergebnisse eines mathematischen Kolloquiums 8, 38–72 (1937)

    Google Scholar 

  78. Zenil, H. (ed.): Randomness Through Computation: Some Answers, More Questions. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  79. Zimand, M.: Two Sources Are Better Than One for Increasing the Kolmogorov Complexity of Infinite Sequences. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 326–338. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Downey, R. (2012). Randomness, Computation and Mathematics. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics