Randomness, Computation and Mathematics

  • Rod Downey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)


This article examines some of the recent advances in our understanding of algorithmic randomness. It also discusses connections with various areas of mathematics, computer science and other areas of science. Some questions and speculations will be discussed.


Ergodic Theorem Computable Function Kolmogorov Complexity Random String Random Real 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, A.A., Calude, C.S., Svozil, K.: Incomputability of quantum physics (in preparation)Google Scholar
  2. 2.
    Allender, E., Friedman, L., Gasarch, W.: Limits on the Computational Power of Random Strings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 293–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from Random Strings. SIAM J. Comp. 35, 1467–1493 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Allender, E., Buhrman, H., Koucký, M.: What Can be Efficiently Reduced to the Kolmogorov-Random Strings? Annals of Pure and Applied Logic 138, 2–19 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Athreya, K., Hitchcock, J., Lutz, J., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM Jour. Comput. 37, 671–705 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Avigad, J.: The metamathematics of ergodic theory. Annals of Pure and Applied Logic 157, 64–76 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barmpalias, G., Lewis, A., Ng, K.M.: The importance of \({\Pi^0_1}\) classes in effective randomness. JSL 75(1), 387–400 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Becher, V.: Turing’s Normal Numbers: Towards Randomness. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 35–45. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Becher, V., Grigorieff, S.: From index sets to randomness in ∅ n, Random reals and possibly infinite computations. Journal of Symbolic Logic 74(1), 124–156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bienvenu, L., Downey, R.: Kolmogorov complexity and Solovay functions. In: STACS 2009, pp. 147–158 (2009)Google Scholar
  11. 11.
    Bienvenu, L., Merkle, W.: Reconciling Data Compression and Kolmogorov Complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 643–654. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Bienvenu, L., Muchnik, A., Shen, A., Vereshchagin, N.: Limit complexities revisited. In: STACS 2008 (2008)Google Scholar
  13. 13.
    Bienvenu, L., Day, A., Hoyrup, M., Mezhirov, I., Shen, A.: Ergodic-type characterizations of algorithmic randomness. To appear in Information and ComputationGoogle Scholar
  14. 14.
    Bertrand, J.: Calcul des Probabilités (1889)Google Scholar
  15. 15.
    Brattka, V., Miller, J., Nies, A.: Randomness and differentiability (to appear)Google Scholar
  16. 16.
    Braverman, M., Yampolsky, M.: Non-Computable Julia Sets. Journ. Amer. Math. Soc. 19(3) (2006)Google Scholar
  17. 17.
    Braverman, M., Yampolsky, M.: Computability of Julia Sets. Springer (2008)Google Scholar
  18. 18.
    Calude, C., Svozil, K.: Quantum randomness and value indefiniteness. Advanced Science Letters 1, 165–168 (2008)CrossRefGoogle Scholar
  19. 19.
    Chaitin, G.: A theory of program size formally identical to information theory. Journal of the ACM 22, 329–340 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cholak, P., Downey, R., Greenberg, N.: Strong-jump traceablilty. I. The computably enumerable case. Advances in Mathematics 217, 2045–2074 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Church, A.: On the concept of a random sequence. Bulletin of the American Mathematical Society 46, 130–135 (1940)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cilibrasi, R., Vitanyi, P.M.B., de Wolf, R.: Algorithmic clustering of music based on string compression. Computer Music J. 28(4), 49–67 (2004)CrossRefGoogle Scholar
  23. 23.
    Day, A.: Increasing the gap between descriptional complexity and algorithmic probability. Transactions of the American Mathematical Society 363, 5577–5604 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    de Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by probabilistic machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata studies. Annals of Mathematics Studies, vol. 34, pp. 183–212. Princeton University Press, Princeton (1956)Google Scholar
  25. 25.
    Demuth, O.: The differentiability of constructive functions of weakly bounded variation on pseude-numbers. Comment. Math. Univ. Carolina. 16, 583–599 (1975)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Downey, R.: Five Lectures on Algorithmic Randomness. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) Computational Prospects of Infinity, Part I: Tutorials. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 14, pp. 3–82. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  27. 27.
    Downey, R.: Algorithmic randomness and computability. In: Proceedings of the 2006 International Congress of Mathematicians, vol. 2, pp. 1–26. European Mathematical Society (2006)Google Scholar
  28. 28.
    Downey, R., Greenberg, N.: Pseudo-jump operators and SJTHard sets (submitted)Google Scholar
  29. 29.
    Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)Google Scholar
  30. 30.
    Downey, R., Hirschfeldt, D., Nies, A., Terwijn, S.: Calibrating randomness. Bulletin Symbolic Logic 12, 411–491 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Fouche, W.: The descriptive complexity of Brownian motion. Advances in Mathematics 155, 317–343 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Fouche, W.: Dynamics of a generic Brownian motion: Recursive aspects. Theoretical Computer Science 394, 175–186 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Franklin, J., Greenberg, N., Miller, J., Ng, K.M.: Martin-Loef random points satisfy Birkhoff’s ergodic theorem for effectively closed sets. Proc. Amer. Math. Soc. (to appear)Google Scholar
  34. 34.
    Fuchs, H., Schnorr, C.: Monte Carlo methods and patternless sequences. In: Operations Research Verfahren, Symp., Heidelberg, vol. XXV, pp. 443–450 (1977)Google Scholar
  35. 35.
    Gács, P.: On the relation between descriptional complexity and algorithmic probability. Theoretical Computer Science 22, 71–93 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gács, P.: Every set is reducible to a random one. Information and Control 70, 186–192 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gács, P., Hoyrup, M., Rojas, C.: Randomness on computable probability spaces, a dynamical point of view. Theory of Computing Systems 48(3), 465–485 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Gregorieff, S., Ferbus, M.: Is Randomness native to Computer Science? Ten years after. In: [78], pp. 243–263 (2011)Google Scholar
  39. 39.
    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Annals of Mathematics 171(3), 2011–2038 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hölzl, R., Kräling, T., Merkle, W.: Time-Bounded Kolmogorov Complexity and Solovay Functions. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 392–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Fortnow, L., Lee, T., Vereshchagin, N.K.: Kolmogorov Complexity with Error. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 137–148. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Kjos-Hanssen, B., Nerode, A.: Effective dimension of points visited by Brownian motion. Theoretical Computer Science 410(4-5), 347–354 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kjos-Hanssen, B., Szabados, T.: Kolmogorov complexity and strong approximation of Brownian motion. Proc. Amer. Math. Soc. 139(9), 3307–3316 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–7 (1965)Google Scholar
  45. 45.
    Kučera, A.: Measure, \({\Pi_1^0}\) classes, and complete extensions of PA. In: Recursion Theory Week, Oberwolfach. Lecture Notes in Mathematics, vol. 1141, pp. 245–259. Springer, Berlin (1984-1985)Google Scholar
  46. 46.
    Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM J. on Comp. 31, 199–211 (2001)CrossRefzbMATHGoogle Scholar
  47. 47.
    Kummer, M.: On the Complexity of Random Strings(Extended abstract). In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 25–36. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  48. 48.
    Levin, L.: Some theorems on the algorithmic approach to probability theory and information theory. Dissertation in Mathematics Moscow University (1971)Google Scholar
  49. 49.
    Levin, L.: Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission 10, 206–210 (1974)Google Scholar
  50. 50.
    Lévy, P.: Théorie de l’Addition des Variables Aléatoires. Gauthier-Villars (1937)Google Scholar
  51. 51.
    Nies, A.: Lowness properties and randomness. Advances in Mathematics 197(1), 274–305 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Nies, A.: Computability and Randomness. Oxford University Press (2009)Google Scholar
  53. 53.
    Nies, A.: Interactions of computability and randomness. In: Ragunathan, S. (ed.) Proceedings of the International Congress of Mathematicians, pp. 30–57 (2010)Google Scholar
  54. 54.
    Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization, and Turing degrees. JSL 70(2), 515–535 (2005)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Infor. Proc. Lett. 84, 1–3 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Miller, J.: Extracting information is hard: a Turing degree of non-integral effective Hausdorff dimension. Advances in Mathematics 226(1), 373–384 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Muchnik, A.A., Positselsky, S.P.: Kolmogorov entropy in the context of computability theory. Theor. Comp. Sci. 271, 15–35 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Muchnik, A.A., Semenov, A., Uspensky, V.: Mathematical metaphysics of randomness. Theor. Comp. Sci. 207(2), 263–317 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Nies, A., Miller, J.: Randomness and computability: Open questions. Bull. Symb. Logic. 12(3), 390–410 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Poul-El, M., Richards, I.: Computability in Analysis and Physics. Springer (1989)Google Scholar
  62. 62.
    Reimann, J.: Effectively closed classes of measures and randomness. Annals of Pure and Applied Logic 156(1), 170–182 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Reimann, J., Slaman, T.: Randomness for continuous measures (to appear), draft available from Reimann’s web siteGoogle Scholar
  64. 64.
    Schnorr, C.P.: A unified approach to the definition of a random sequence. Mathematical Systems Theory 5, 246–258 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)Google Scholar
  66. 66.
    Simpson, S.: Medvedev Degrees of 2-Dimensional Subshifts of Finite Type. Ergodic Theory and Dynamical Systems (to appear)Google Scholar
  67. 67.
    Simpson, S.: Mass Problems Associated with Effectively Closed Sets. Tohoku Mathematical Journal 63(4), 489–517 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Simpson, S.: Symbolic Dynamics: Entropy = Dimension = Complexity (2011) (to appear) Google Scholar
  69. 69.
    Stephan, F.: Martin-Löf random sets and PA-complete sets. In: Logic Colloquium 2002. Lecture Notes in Logic, vol. 27, pp. 342–348. Association for Symbolic Logic (2006)Google Scholar
  70. 70.
    Turing, A.: On computable numbers with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936); Correction in Proceedings of the London Mathematical Society 43, 544–546 (1937)CrossRefGoogle Scholar
  71. 71.
    Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Vitanyi, P.: Information distance in multiples. IEEE Trans. Inform. 57(4), 2451–2456 (2011)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Ville, J.: Étude Critique de la Notion de Collectif. Gauthier-Villars (1939)Google Scholar
  74. 74.
    von Mises, R.: Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z 5, 52–99 (1919)MathSciNetCrossRefGoogle Scholar
  75. 75.
    von Neumann, J.: Various techniques used in connection with random digits. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.) Monte Carlo Method. National Bureau of Standards Applied Mathematics Series, vol. 12, pp. 36–38 (1951)Google Scholar
  76. 76.
    Wald, A.: Sur le notion de collectif dans la calcul des probabilitiés. Comptes Rendes des Seances de l’Académie des Sciences 202, 1080–1083 (1936)Google Scholar
  77. 77.
    Wald, A.: Die Weiderspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung. Ergebnisse eines mathematischen Kolloquiums 8, 38–72 (1937)Google Scholar
  78. 78.
    Zenil, H. (ed.): Randomness Through Computation: Some Answers, More Questions. World Scientific, Singapore (2011)zbMATHGoogle Scholar
  79. 79.
    Zimand, M.: Two Sources Are Better Than One for Increasing the Kolmogorov Complexity of Infinite Sequences. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 326–338. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rod Downey
    • 1
    • 2
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand
  2. 2.Isaac Newton Institute for Mathematical SciencesCambridgeUnited Kingdom

Personalised recommendations