Advertisement

Automatic Functions, Linear Time and Learning

  • John Case
  • Sanjay Jain
  • Samuel Seah
  • Frank Stephan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7318)

Abstract

The present work determines the exact nature of linear time computable notions which characterise automatic functions (those whose graphs are recognised by a finite automaton). The paper also determines which type of linear time notions permit full learnability for learning in the limit of automatic classes (families of languages which are uniformly recognised by a finite automaton). In particular it is shown that a function is automatic iff there is a one-tape Turing machine with a left end which computes the function in linear time where the input before the computation and the output after the computation both start at the left end. It is known that learners realised as automatic update functions are restrictive for learning. In the present work it is shown that one can overcome the problem by providing work-tapes additional to a resource-bounded base tape while keeping the update-time to be linear in the length of the largest datum seen so far. In this model, one additional such worktape provides additional learning power over the automatic learner model and the two-work-tape model gives full learning power.

Keywords

Turing Machine Inductive Inference Finite Automaton Input Symbol Input Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blum, L., Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28, 125–155 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 51–62 (2000)Google Scholar
  4. 4.
    Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic Learning of Subclasses of Pattern Languages. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 192–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Freivalds, R., Kinber, E., Smith, C.H.: On the impact of forgetting on learning machines. Journal of the ACM 42, 1146–1168 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Mark Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hartmanis, J.: Computational complexity of one-tape Turing machine computations. Journal of the Association of Computing Machinery 15, 411–418 (1968)Google Scholar
  8. 8.
    Hennie, F.C.: Crossing sequences and off-line Turing machine computations. In: Sixth Annual Symposium on Switching Circuit Theory and Logical Design, pp. 168–172 (1965)Google Scholar
  9. 9.
    Hodgson, B.R.: Décidabilité par automate fini. Annales des sciences mathématiques du Québec 7(1), 39–57 (1983)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jain, S., Luo, Q., Stephan, F.: Learnability of Automatic Classes. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 321–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Jain, S., Ong, Y.S., Pu, S., Stephan, F.: On automatic families. In: Proceedings of the eleventh Asian Logic Conference in Honour of Professor Chong Chitat on his Sixtieth Birthday, pp. 94–113. World Scientific (2012)Google Scholar
  12. 12.
    Jain, S., Osherson, D.N., Royer, J.S., Sharma, A.: Systems That Learn, 2nd edn. MIT Press (1999)Google Scholar
  13. 13.
    Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Kinber, E., Stephan, F.: Language learning from texts: mind changes, limited memory and monotonicity. Information and Computation 123, 224–241 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages from positive data: a survey. Theoretical Computer Science 397, 194–232 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. II, 143. Elsevier (1999)Google Scholar
  17. 17.
    Osherson, D., Stob, M., Weinstein, S.: Systems That Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford — The MIT Press, Cambridge, Massachusetts (1986)Google Scholar
  18. 18.
    Pitt, L.: Inductive inference, DFAs, and Computational Complexity. In: Jantke, K.P. (ed.) AII 1989. LNCS (LNAI), vol. 397, pp. 18–44. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  19. 19.
    Trakhtenbrot, B.A.: Turing computations with logarithmic delay. Algebra i Logika 3, 33–48 (1964)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • John Case
    • 1
  • Sanjay Jain
    • 2
  • Samuel Seah
    • 3
  • Frank Stephan
    • 2
    • 3
  1. 1.Department of Computer and Information SciencesUniversity of DelawareNewarkUnited States of America
  2. 2.Department of Computer ScienceNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.Department of MathematicsNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations