Advertisement

Developing Anti-spam Filters Using Automatically Generated Rough Sets Rules

  • N. Pérez-Díaz
  • D. Ruano-Ordás
  • F. Fdez-Riverola
  • J. R. Méndez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 171)

Abstract

The huge amount of spam messages has limited the benefits introduced by e-mail communications. Therefore, spam filters are indispensable to fight against spam deliveries. However, the development of spam filters is very expensive whereas the usage of external filtering services can damage communications privacy. In such situation, we introduce an automatic procedure to integrate knowledge extracted by using rough-sets theory into spam filters to develop a low-cost filtering infrastructure.

Keywords

Regular Expression Indiscernibility Relation Filter Rule Target Message Spam Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garg, A., Battiti, R., Cascella, R.: May I borrow your filter? Exchanging Filters to Combat Spam in a Community. Adv. Inf. Netw. and Appl., 489–493 (2006), doi:10.1109/AINA.2006.1Google Scholar
  2. 2.
    AgentSpam: Spam & Virus filtering (2011), http://agentspam.com (accessed February 17, 2012)
  3. 3.
    Newman, C., et al.: ESMTP and LMTP Transmission Types Registration. RFC 3848, Network Working Group. (2004), http://tools.ietf.org/html/rfc3848 (accessed February 17, 2012)
  4. 4.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)zbMATHGoogle Scholar
  5. 5.
    Pawlak, Z.: Rough sets. Int. J. of Parallel Program 11(5), 341–356 (1982), doi:10.1007/BF01001956MathSciNetzbMATHGoogle Scholar
  6. 6.
    Glymin, M., Ziark, W.: Rough Set Approach to Spam Filter Learning. In: Int. Conf. of Rough Sets and Intel. Syst. Paradigms (2007)Google Scholar
  7. 7.
    Zhao, W., Zhu, Y.: Classifying Email Using Variable Precision Rough Set Approach. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 766–771. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Zhou, B., Yao, Y., Luo, J.: A Three-Way Decision Approach to Email Spam Filtering. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS, vol. 6085, pp. 28–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Lai, G., Chen, C., Laih, C., Chen, T.: A Collaborative Anti-spam System. Expert. Syst. Appl. 3, 6645–6653 (2009), doi:10.1016/j.eswa.2008.08.075.CrossRefGoogle Scholar
  10. 10.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., et al.: A Comparative Performance Study of Feature Selection Methods for the Anti-spam Filtering Domain. In: Industrial Conf. Data Min., pp. 106–120 (2006), doi:10.1007/11790853_9Google Scholar
  11. 11.
    Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: 14th Int. Joint Conf. on Artif. Intel., pp. 1137–1143 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Pérez-Díaz
    • 1
  • D. Ruano-Ordás
    • 1
  • F. Fdez-Riverola
    • 1
  • J. R. Méndez
    • 1
  1. 1.Dept. InformáticaUniversity of Vigo, Escuela Superior de Ingeniería InformáticaOurenseSpain

Personalised recommendations