A Context-Aware Mobile Recommender System Based on Location and Trajectory

  • Manuel J. Barranco
  • José M. Noguera
  • Jorge Castro
  • Luis Martínez
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 171)

Abstract

Recommender systems have typically been used in tourism applications to filter out irrelevant information and to provide personalized recommendations to the users. With the advent of mobile devices and ubiquitous computing, RSs have begun to incorporate Location Based Services (LBS) into mobile tourism guides to provide users with interesting points of interest (POIs) according to their contextual information, mainly physical location. In this paper, we propose a context-aware system for mobile devices that incorporates some implicit contextual information that is scarcely used in the literature: the user’s speed and his trajectory. This system has been specifically crafted to assist travelling users by providing them with smart and personalized POIs along their route taking into account their current location and driving speed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a mobile context-aware tour guide. Wirel. Netw. 3, 421–433 (1997)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1), 103–145 (2005)CrossRefGoogle Scholar
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  4. 4.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, US (2011)CrossRefGoogle Scholar
  5. 5.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Personal and Ubiquitous Computing, 1–20 (2011)Google Scholar
  6. 6.
    Biuk-Aghai, R., Fong, S., Si, Y.-W.: Design of a recommender system for mobile tourism multimedia selection. In: 2nd International Conference on Internet Multimedia Services Architecture and Applications, IMSAA 2008, pp. 1–6 (2008)Google Scholar
  7. 7.
    Burke, R.: Knowledge-based recommender systems. Encyclopedia of Library and Information Systems 69(32) (2000)Google Scholar
  8. 8.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2000, New York, USA, pp. 17–24 (2000)Google Scholar
  10. 10.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer graphics: principles and practice, 2nd edn. Addison-Wesley Longman Publishing, Boston (1990)Google Scholar
  11. 11.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  12. 12.
    Gorgoglione, M., Panniello, U., Tuzhilin, A.: The effect of context-aware recommendations on customer purchasing behavior and trust. In: Proc. of the Fifth ACM Conference on RS, RecSys 2011, pp. 85–92. ACM, New York (2011)Google Scholar
  13. 13.
    Guttman, R.H.: Merchant differentation through integrative negotiation in agent-mediated electronic comerce. Master’s thesis, School of Architecture and Planning, Program in Media Arts and Sciences, Massachusetts Institute of Technology (1998)Google Scholar
  14. 14.
    Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized poi recommendations in mobile environments. In: Proceedings of the International Symposium on Applications on Internet, pp. 124–129. IEEE CS, USA (2006)Google Scholar
  15. 15.
    Huang, H., Gartner, G.: Using context-aware collaborative filtering for poi recommendations in mobile guides. In: Advances in Location-Based Services. Lecture Notes in Geoinformation and Cartography, pp. 131–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Kenteris, M., Gavalas, D., Mpitziopoulos, A.: A mobile tourism recommender system. In: IEEE Symposium on Computers and Communications (ISCC), pp. 840–845 (2010)Google Scholar
  17. 17.
    Krulwich, B.: Lifestyle finder: intelligent user profiling using large-scale demographic data. AI Magazine 18(2), 37–45 (1997)Google Scholar
  18. 18.
    Kuo, M.-H., Chen, L.-C., Liang, C.-W.: Building and evaluating a location-based service recommendation system with a preference adjustment mechanism. Expert Systems with Applications 36(2, Part 2), 3543–3554 (2009)CrossRefGoogle Scholar
  19. 19.
    Martínez, L., Pérez, L., Barranco, M.: A multi-granular linguistic content-based recommendation model. International Journal of Intelligent Systems (2007) (in press)Google Scholar
  20. 20.
    Martínez, L., Pérez, L., Barranco, M., Mata, F.: A multi-granular linguistic based-content recommender system model. In: 10th Int. Conf. on Fuzzy Theory and Technology (2005)Google Scholar
  21. 21.
    Martínez, L., Rodríguez, R.M., Espinilla, M.: Reja: A georeferenced hybrid recommender system for restaurants. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009, vol. 3, pp. 187–190 (2009)Google Scholar
  22. 22.
    Noguera, J.M., Barranco, M.J., Segura, R.J., Martínez, L.: A mobile 3d-gis hybrid recommender system for tourism. Technical report, University of Jaén, Spain, TR-1-2012 (2012)Google Scholar
  23. 23.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill webert: Identifying interesting web sites. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, vol. 1, pp. 54–61. AAAI Press (1996)Google Scholar
  24. 24.
    Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., Zipl, A.: Crumpet: creation of user-friendly mobile services personalised for tourism. In: 2nd Int. Conf. on 3G Mobile Communication Technologies, pp. 28–32 (2001)Google Scholar
  25. 25.
    Resnick, P., Varian, H.: Recommender systems. Association for Computing Machinery. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  26. 26.
    Ricci, F.: Mobile recommender systems. International Journal of Information Technology and Tourism 12(3), 205–231 (2011)CrossRefGoogle Scholar
  27. 27.
    Rodríguez, R., Espinilla, M., Sánchez, P., Martínez, L.: Using linguistic incomplete preference relations to cold start recommendations. Internet Research 20, 296–315 (2010)CrossRefGoogle Scholar
  28. 28.
    Saiph Savage, N., Baranski, M., Elva Chavez, N., Hllerer, T.: I’m feeling loco: A location based context aware recommendation system. In: Advances in Location-Based Services. Lec. Notes in Geoinformation & Cartography, pp. 37–54. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Yang, W.-S., Cheng, H.-C., Dia, J.-B.: A location-aware recommender system for mobile shopping environments. Expert Systems with Applications 34(1), 437–445 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel J. Barranco
    • 1
  • José M. Noguera
    • 1
  • Jorge Castro
    • 1
  • Luis Martínez
    • 1
  1. 1.Department of Computer SciencesUniversity of JaénJaénSpain

Personalised recommendations