A Linguistic Approach for Semantic Web Service Discovery

  • Jordy Sangers
  • Flavius Frasincar
  • Frederik Hogenboom
  • Alexander Hogenboom
  • Vadim Chepegin
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 171)


We propose a Semantic Web Service Discovery framework for finding semantically annotated Web services by using natural language processing techniques. The framework searches through a set of annotated Web services for matches with a user query, which consists of keywords, so that knowledge about semantic languages is not required. For matching keywords with Semantic Web service descriptions given in Web Service Modeling Ontology (WSMO), techniques like part-of-speech tagging, lemmatization, and word sense disambiguation are used. Three different matching algorithms are defined and evaluated for their ability to do exact matching and approximate matching between the user query and Web Service descriptions.


Word Sense Disambiguation Natural Language Processing Technique Natural Language Processing Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., Konig-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J., Stollberg, M.: Web Service Modeling Ontology (WSMO). W3C Member Submission (June 3, 2005),
  2. 2.
    Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: WordNet and Other Lexical Resources: Applications, Extensions and Customizations, NAACL 2001 Workshop (2001)Google Scholar
  3. 3.
    Bussler, C., Cimpian, E., Fensel, D., Gomez, J.M., Haller, A., Haselwanter, T., Kerrigan, M., Mocan, A., Moran, M., Oren, E., Sapkota, B., Toma, I., Viskova, J., Vitvar, T., Zaremba, M., Zaremba, M.: Web Service Execution Environment (WSMX). W3C Member Submission (June 3, 2005),
  4. 4.
    Cefriel, Seekda!, Ontoprise, University of Sheffield: Service-Finder (2010),
  5. 5.
    Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Language (WSDL). W3C Note (March 15, 2001),
  6. 6.
    DERI Galway: Web Service Execution Environment (2010),
  7. 7.
    Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Services. In: 30th International Conference on Very Large Data Bases (VLDB 2004), vol. 30, pp. 372–383 (2004)Google Scholar
  8. 8.
    Ernst, M.D., Lencevicius, R., Perkins, J.H.: Detection of Web Service Substitutability and Composability. In: International Workshop on Web Services — Modeling and Testing (WS-MaTe 2006), pp. 123–135 (2006)Google Scholar
  9. 9.
    EU IST, FIT-IT: WSMO4J API (2010),
  10. 10.
    Gomez, J.M., Rico, M., Garcia-Sanchez, F., Bejar, R.M., Bussler, C.: GODO: Goal driven orchestration for Semantic Web Services. In: 1st Workshop on Web Services Modeling Ontology Implementations (WIW 1004), CEUR Workshop Proceedings, vol. 113 (2004)Google Scholar
  11. 11.
    Hikimpour, F., Sell, D., Cabral, L., Domingue, J., Motta, E.: Semantic Web Service Composition in IRS-III: The Structured Approach. In: 7th IEEE International Conference on E-Commerce Technology (CEC 2005), pp. 484–487. IEEE Computer Society (2005)Google Scholar
  12. 12.
    Jiang, J., Conrath, D.: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. In: International Conference Research on Computational Linguistics (ROCLING X), pp. 19–33 (1997)Google Scholar
  13. 13.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S. W3C Member Submission (November 22, 2004),
  14. 14.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Wordnet: An on-line lexical database. International Journal of Lexicography 3(4), 235–244 (1990)CrossRefGoogle Scholar
  15. 15.
    Navigli, R., Velardi, P.: Structural Semantic Interconnections: a Knowledge-Based Approach to Word Sense Disambiguation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1075–1086. IEEE Computer Society (2005)Google Scholar
  16. 16.
    Semantic Technology Institute: Seekda (2009),
  17. 17.
    The Stanford Natural Language Processing Group: Stanford Log-linear Part-Of-Speech Tagger (2009),
  18. 18.
    The University of Sheffield: Pure Java WordNet Similarity Library (2010),
  19. 19.
    Vitvar, T., Kopecky, J., Fensel, D.: WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web. In: 5th IEEE European Conference on Web Services (ECOWS 2007), pp. 77–86. IEEE Computer Society (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jordy Sangers
    • 1
  • Flavius Frasincar
    • 1
  • Frederik Hogenboom
    • 1
  • Alexander Hogenboom
    • 1
  • Vadim Chepegin
    • 2
  1. 1.Erasmus University RotterdamRotterdamThe Netherlands
  2. 2.Tie KinetixHoofddorpThe Netherlands

Personalised recommendations