A Case-Based Planning Mechanism for a Hardware-Embedded Reactive Agents Platform

  • Juan F. de Paz
  • Ricardo S. Alonso
  • Dante I. Tapia
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 171)

Abstract

Wireless Sensor Networks is a key technology for gathering relevant information from different sources. In this sense, Multi-Agent Systems can facilitate the integration of heterogeneous sensor networks and expand the sensors’ capabilities changing their behavior dynamically and personalizing their reactions. Both Wireless Sensor Networks and Multi-Agent Systems can be successfully applied to different management scenarios, such as logistics, supply chain or production. The Hardware-Embedded Reactive Agents (HERA) platform allows developing applications where agents are directly embedded in heterogeneous wireless sensor nodes with reduced computational resources. This paper presents the reasoning mechanism included in HERA to provide HERA Agents with Case-Based Planning features that allow solving problems considering past experiences.

Keywords

Wireless Sensor Networks Multi-Agent Systems Case-Based Planning Service-Oriented Architectures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marin-Perianu, M., Meratnia, N., Havinga, P., de Souza, L., Muller, J., Spiess, P., et al.: Decentralized Enterprise Systems: A Multiplatform Wireless Sensor Network Approach. IEEE Wireless Communications 14(6), 57–66 (2007)CrossRefGoogle Scholar
  2. 2.
    Cerami, E.: Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI & WSDL, 1st edn. O’Reilly Media, Inc. (2002)Google Scholar
  3. 3.
    Corchado, J.M., Bajo, J., Tapia, D.I., Abraham, A.: Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare. IEEE Transactions on Information Technology in Biomedicine 14, 234–240 (2010)CrossRefGoogle Scholar
  4. 4.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley (2009)Google Scholar
  5. 5.
    Sánchez, D., Isern, D., Rodríguez-Rozas, Á., Moreno, A.: Agent-based platform to support the execution of parallel tasks. Expert Systems with Applications 38, 6644–6656 (2011)CrossRefGoogle Scholar
  6. 6.
    Tapia, D.I., Alonso, R.S., García, Ó., Corchado, J.M.: HERA: Hardware-Embedded Reactive Agents Platform. In: Pérez, J.B., Corchado, J.M., Moreno, M.N., Julián, V., Mathieu, P., Canada-Bago, J., Ortega, A., Caballero, A.F., et al. (eds.) Highlights in PAAMS. AISC, vol. 89, pp. 249–256. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bajo, J., Borrajo, M.L., De Paz, J.F., Corchado, J.M., Pellicer, M.A.: A multi-agent system for web-based risk management in small and medium business. Expert Systems with Applications 39, 6921–6931 (2012)CrossRefGoogle Scholar
  8. 8.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.I.: Intelligent environment for monitoring Alzheimer patients, agent technology for health care. Decision Support Systems 44, 382–396 (2008)CrossRefGoogle Scholar
  9. 9.
    Tynan, R., O’Hare, G., Ruzzelli, A.: Multi-Agent System Methodology for Wireless, Sensor Networks. Multiagent and Grid Systems 2, 491–503 (2006)Google Scholar
  10. 10.
    Kwon, Y., Sundresh, S., Mechitov, K., Agha, G.: ActorNet: an actor platform for wireless sensor networks. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1297–1300. ACM, Japan (2006)CrossRefGoogle Scholar
  11. 11.
    Baker, P., Catterson, V., McArthur, S.: Integrating an Agent-Based Wireless Sensor Network within an Existing Multi-Agent Condition Monitoring System. In: 15th International Conference on Intelligent System Applications to Power Systems, ISAP 2009, pp. 1–6 (2009)Google Scholar
  12. 12.
    Zboril, F., Horacek, J., Spacil, P.: Intelligent Agent Platform and Control Language for Wireless Sensor Networks. In: Third UK Sim European Symposium on Computer Modeling and Simulation, EMS 2009, pp. 482–487 (2009)Google Scholar
  13. 13.
    Zato, C., De Paz, J.F., de Luis, A., Bajo, J., Corchado, J.M.: Model for assigning roles automatically in egovernment virtual organizations. Expert Systems with Applications (2012) (in Press), doi:10.1016/j.eswa.2012.01.185Google Scholar
  14. 14.
    Tapia, D.I., Alonso, R.S., De la Prieta, F., Zato, C., Rodriguez, S., Corchado, E., Bajo, J., Corchado, J.M.: SYLPH: An Ambient Intelligence based platform for integrating heterogeneous Wireless Sensor Networks. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2010)Google Scholar
  15. 15.
    Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6, 86–93 (2002)CrossRefGoogle Scholar
  16. 16.
    Holmes, G., Hall, M., Frank, E.: Generating Rule Sets from Model Trees. In: Proc. of the 12th Australian Joint Conf. on Artificial Intelligence, pp. 1–12 (1999)Google Scholar
  17. 17.
    Salzberg, S.L.: C4.5: Programs for Machine Learning by J. Ross Quinlan. In: Machine Learning, vol. 16, pp. 235–240. Morgan Kaufmann Publishers, Inc. (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan F. de Paz
    • 1
  • Ricardo S. Alonso
    • 1
  • Dante I. Tapia
    • 1
  1. 1.Computers and Automation DepartmentUniversity of SalamancaSalamancaSpain

Personalised recommendations