Abstract
Remodeling of the extracellular matrix (ECM) is an essential component of the complex vascular biology that drives each step within the angiogenic cascade. The process of angiogenesis involves a series of events that depend heavily on proteinases and their ability to remodel the ECM, originating with degradation of the basement membrane to allow for endothelial cell (EC) breakthrough, migration, and proliferation. This is followed by organization into nascent blood vessel sprouts, vessel maturation and stabilization, deposition of basement membrane around the new vessels, and finally pruning or remodeling of the new vasculature for physiological needs. There is evidence that ECs cooperate with supporting stromal cells to orchestrate these remodeling events and ultimately to create pericyte-stabilized functional networks of vessels. During angiogenesis, proteinases not only directly breakdown the ECM to create a physical path for new EC sprouts, they also indirectly expose cryptic sites hidden within the ECM to alter the adhesive microenvironment for pericytes and endothelial cells during sprouting. Physiological control of angiogenesis is achieved in part by the angiogenic switch, in which a balance of pro- and anti-angiogenic factors serves to maintain vessel homeostasis under normal conditions. Proteinases, and certain matrix metalloproteinases (MMPs) in particular, function on both sides of the angiogenic switch. They degrade the basement membrane and nearby ECM surrounding established blood vessels at the onset of angiogenesis, and release pro-angiogenic growth factors that would remain otherwise bound to the ECM. However, they also negatively control angiogenesis, as some proteolytic fragments of the ECM possess anti-angiogenic properties. In addition to the chemical specificity of proteinases, emerging evidence suggests that their ability to proteolytically remodel the ECM during angiogenesis may also depend on the physical properties of the ECM. In this chapter, we will discuss the important factors that govern ECM remodeling during angiogenesis, focusing on the links between proteinases, stromal cells, and matrix physical properties. The impact of these possible links on therapeutic and pathologic angiogenesis will also be discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jain, R.: Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003)
Carmeliet, P., Jain, R.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)
Adams, R., Alitalo, K.: Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007)
Page-McCaw, A., Ewalk, A., Werb, Z.: Matrix metalloproteinases and the regulation of tissue remodeling. Nat. Rev. Mol. Cell. Biol. 8, 221–233 (2007)
Ghajar, C., George, S., Putnam, A.: Matrix metalloproteinase control of capillary morphogenesis. Crit. Rev. Eukaryot. Gene. Expr. 18(3), 251–278 (2008)
Ausprunk, D., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65 (1977)
Davis, G., Senger, D.: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97, 1093–1107 (2005)
Roovers, K., Assoian, R.: Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22, 818–826 (2000)
Seger, R., Krebs, E.: The MAPK signaling cascade. FASEB J. 9, 726–735 (1995)
Vinals, F., Pouyssegur, J.: Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Mol. Cell. Biol. 19, 2763–2772 (1999)
Assoian, R., Schwartz, M.: Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 11, 48–53 (2001)
Akiyama, S., Yamada, S., Chen, W., Yamada, K.: Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J. Cell Biol. 109, 863–875 (1989)
Meredith, J., Schwartz, M.: Integrins, adhesion and apoptosis. Trends Cell Biol. 7, 146–150 (1997)
Giancotti, F., Ruoslahti, R.: Integrin signaling. Science 285, 1028–1032 (1999)
Wary, K., Mainiero, F., Isakoff, S., Marcantonion, E., Giancotti, F.: The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733–743 (1996)
Liu, Y., Senger, D.: Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB J. 18, 457–468 (2004)
Davis, G., Bayless, K., Mavila, A.: Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252–275 (2002)
Vernon, R., Sage, H.: A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57(2), 118–133 (1999)
Ingber, D., Folkman, J.: Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest. 59, 44–51 (1988)
Whelan, M., Senger, D.: Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J. Biol. Chem. 278, 327–334 (2003)
Montesano, R., Orci, L., Vassalli, P.: In vitro rapid organization of endothelial cells into capillary-like networks is promotoed by collagen matrices. J. Cell Biol. 97, 1648–1652 (1983)
Senger, D., Perruzzi, C., Streit, M., Koteliansky, V., Fougerolles, A.d., Detmar, M.: The alpha1beta1 and alpha2beta1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathhol. 160, 195–204 (2002)
Davis, G., Camarillo, C.: An alpha2beta1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224, 39–51 (1996)
Senger, D., Claffey, K., Benes, J., Perruzzi, C., Sergiou, A., Detmar, M.: Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc. Natl. Acad. Sci. USA 94, 13612–13617 (1997)
Bayless, J., Davis, G.: The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J. Cell Sci. 115, 1123–1136 (2002)
Davis, G., Bayless, K.: An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10, 27–44 (2003)
Yurchenco, P., Amenta, P., Patton, B.: Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 276, 521–538 (2004)
Fujiwara, H., Kikkawa, Y., Sanzen, N., Sekiguchi, K.: Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J. Biol. Chem. 276, 17550–17558 (2001)
Mettouchi, A., Klein, S., Guo, W., Lopez-Lago, M., Lemichez, E., Westwick, J., Giancotti, F.: Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol. Cell. 8, 115–127 (2001)
Klein, S., de Fougerolles, A.R., Blaikie, P., Khan, L., Pepe, A., Green, C., Koteliansky, V., Giancotti, F.: Alpha5 beta1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol. Cell. Biol. 22, 5912–5922 (2002)
Nagase, H., Woessner, J.: Matrix metalloproteinases. J. Biol. Chem. 274, 21491–21494 (1999)
Stamenkovic, I.: Extracellular matrix remodeling: the role of matrix metalloproteinases. J. Pathol. 200, 448–464 (2003)
Sternlicht, M., Werb, Z.: How matrix metalloproteinases regulate cell behavior. Ann. Rev. Cell Dev. Biol. 17, 463–516 (2001)
van Hinsbergh, V., Englese, M., Quax, P.: Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler. Thromb. Vasc. Biol. 26, 716–728 (2006)
Bode, W., Fernandez-Catalan, C., Tschesche, H., Grams, F., Nagase, H., Maskos, K.: Structural properties of matrix metalloproteinases. Cell. Mol. Life Sci. 55, 639–652 (1999)
Kleiner, D., Stetler-Stevenson, W.: Structural biochemistry and activation of matrix metalloproteinases. Curr. Opin. Cell Biol. 5, 891–897 (1993)
McCawley, L., Matrisian, L.: Matrix metalloproteinases: they’re not just for matrix anymore! Curr. Opin. Cell Biol. 13, 534–540 (2001)
Lynch, C., Matrisian, L.: Matrix metalloproteinases in tumor-hose cell communication. Differentiation 70, 561–573 (2002)
Lee, M.-H., Murphy, G.: Matrix metalloproteinases at a glance. J. Cell Sci. 117, 4015–4016 (2004)
Visse, R., Nagase, H.: Matrix metalloproteinases and tissue inhibitors or metalloproteinases. Circ. Res. 92, 827–839 (2003)
Taraboletti, G., D’Ascenzo, S., Borsotti, P., Giavazzi, R., Pavan, A., Dolo, V.: Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol. 160(2), 673–680 (2002)
Li, A., Dubey, S., Varney, M., Dave, B., Singh, R.: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinase production and regulated angiogenesis. J. Immunol. 170, 3369–3376 (2003)
Nguyen, M., Arkell, J., Jackson, C.: Human endothelial gelatinases and angiogenesis. Int. J. Biochem. Cell Biol. 33, 960–970 (2001)
Nyberg, P., Xie, L., Kalluri, R.: Endogenous inhibitors of angiogenesis. Cancer Cell 3, 589–601 (2005)
Yana, I., Sagara, H., Takaki, S., Takatsu, K., Nakamura, K., Nakao, K., Katsuki, M., Taniguchi, S., Aoki, T., Sato, H., Weiss, S., Seiki, M.: Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120, 1607–1614 (2007)
Kalluri, R.: Basement membranes: structure, assembly and role in tumor angiogenesis. Nat. Rev. Cancer 3, 422–433 (2003)
Jeong, J., Cha, H., Yu, D., Seiki, M., Kim, K.: Induction of membrane-type matrix metalloproteinase-1 stimulates angiogenic activities of bovine aortic endothelial cells. Angiogenesis 3, 167–174 (1999)
Tang, Y., Kesavan, P., Nakada, M., Yan, L.: Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol. Cancer Res. 2, 73–80 (2004)
Helm, C., Fleury, M., Zisch, A., Boschetti, F., Swartz, M.: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102, 15779–15784 (2005)
Carlson, M., Longaker, M.: The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repear Regen 12, 134–147 (2004)
Burbridge, M., Coge, F., Galizzi, J., Boutin, J., West, D., Tucker, G.: The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis 5, 215–226 (2002)
Kachgal, S., Putnam, A.: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1), 47–59 (2011)
Lee, S., Jilani, S., Nikolova, G., Carpizo, D., Iruela-Arispe, M.: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005)
Bergers, G., Brekken, R., McMahon, G., Vu, T., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., Hanahan, D.: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2(10), 737–744 (2000)
Moses, M., Marikovsky, M., Harper, J., Vogt, P., Eriksson, E., Klagsbrun, M., Langer, R.: Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing. J. Cell. Biochem. 60(3), 379–386 (1996)
Muhs, B., Plitas, G., Delgado, Y., Ianus, I., Shaw, J., Adelman, M., Lamparello, P., Shamamian, P., Gagne, P.: Temporal expression and activation of matrix metalloproteinases-2, -9, and membrane type 1-matrix metalloproteinase following acute hindlimb ischemia. J. Surg. Res. 111, 8–15 (2003)
Patterson, J., Hubbell, J.: Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31, 7836–7845 (2010)
Moon, J., Saik, J., Poche, R., Leslie-Barbick, J., Lee, S., Smith, A., Dickinson, M., West, J.: Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31, 3840–3847 (2010)
Zisch, A., Lutolf, M., Ehrbar, M., Raeber, G., Rizzi, S., Davies, N., Schmokel, H., Bezuidenhout, D., Djonov, V., Zilla, P., Hubbell, J.: Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17(15), 2260–2262 (2003)
Davis, G., Allen, K., Salazar, R., Maxwell, S.: Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci. 114, 917–930 (2001)
Zhu, W., Guo, X., Villaschi, S., Nicosia, R.: Regulation of vascular growth and regression by matrix metalloproteinases in the rat aorta model of angiogenesis. Lab. Invest. 80, 545–555 (2000)
Saunders, W., Bayless, J., Davis, G.: MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J. Cell Sci. 118, 2325–2340 (2005)
Davis, G., Saunders, W.: Molecular balance of capillary tube formation versus regression in wound repair: Role of matrix metalloproteinases and their inhibitors. J. Investig. Dermatol. Symp. Proc. 11, 44–56 (2006)
Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J., Maeshima, Y., Yang, C., Hynes, R., Werb, Z., Sudhakar, A., Kalluri, R.: Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3(6), 589–601 (2003)
Hangai, M., Kitaya, N., Xu, J., Chan, C., Kim, J., Werb, Z., Ryan, S., Brooks, P.: Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am. J. Path. 161(4), 1429–1437 (2002)
Chang, J., Javier, J., Chang, G., Oliveira, H., Azar, D.: Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett. 579, 3601–3606 (2005)
Heljasvaara, R., Nyberg, P., Luostarinen, J., Parikka, M., Heikkila, P., Rehn, M., Sorsa, T., Salo, T., Pihlajaniemi, T.: Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp. Cell Res. 307(2), 292–304 (2005)
O’Reilly, M., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W., Flynn, E., Birkhead, J., Olsen, B., Folkman, J.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997)
Kim, Y., Jang, J., Lee, O., Yeon, J., Choi, E., Kim, K., Lee, S., Kwon, Y.: Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase 2. Cancer Res. 60, 5410–5413 (2000)
Vihinen, P., Kahari, V.-M.: Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int. J. Cancer 99, 157–166 (2002)
Hellstrom, M., Gerhardt, H., Kalen, M., Li, X., Eriksson, U., Wolburg, H., Betsholtz, C.: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153(3), 543–554 (2001)
Gerhardt, H., Betsholtz, C.: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314(1), 15–23 (2003)
Lehti, K., Birkedal-Hansen, E.A.H., Holmbeck, K., Miyake, Y., Chun, T., Weiss, S.: An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev. 19, 979–991 (2005)
Ghajar, C.M., Kachgal, S., Kniazeva, E., Mori, H., Costes, S.V., George, S.C., Putnam, A.J.: Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell Res. 316(5), 813–825 (2010)
Suri, C., Jones, P., Patan, S., Bartunkova, S., Mainsonpierre, P., Davis, S., Sato, T., Yancopoulos, G.: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996)
Kraling, B., Wiederschain, D., Boehm, T., Rehn, M., Mulliken, J., Moses, M.: The role of matrix metalloproteinase activity in the maturation of human capillary endothelial cells in vitro. J. Cell Sci. 112(Pt 10), 1599–1609 (1999)
Saunders, W., Bohnsack, B., Faske, J., Anthis, N., Bayless, K., Hirschi, K., Davis, G.: Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175(1), 179–191 (2006)
Lafleur, M., Forsyth, P., Atkinson, S., Murphy, G., Edwards, D.: Perivascular cells regulate endothelial membrane type-1 matrix metalloproteinase activity. Biochem. Biophys. Res. Commun. 282, 463–473 (2001)
Edwards, D., Handsley, M., Pennington, C.: The ADAM metalloproteinases. Mol. Aspects Med. 29(5), 258–289 (2008)
Roghani, M., Becherer, J., Moss, M., Atherton, R., Erdjument-Bromage, H., Arribas, J., Blackburn, R., Weskamp, G., Tempst, P., Blobel, C.: Metalloproteinase-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 6, 3531–3540 (1999)
Howard, L., Maciewicz, R., Blobel, C.: Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem. J. 348(Pt 1), 21–27 (2000)
Schlomann, U., Wildeboer, D., Webster, A., Antropova, O., Zeuschner, D., Knight, C., Docherty, A., Lambert, M., Skelton, L., Jockusch, H., Bartsch, J.: The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J. Biol. Chem. 50, 48210–48219 (2002)
White, J.: ADAMs: modulators of cell–cell and cell-matrix interactions. Curr. Opin. Cell Biol. 15(5), 598–606 (2003)
Niewiarowski, S., McLane, M., Kloczewiak, M., Stewart, G.: Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin. Hematol. 31(4), 289–300 (1994)
Mazzocca, A., Coppari, R., Franco, R.D., Cho, J., Libermann, T., Pinzani, M., Toker, A.: A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 65(11), 4728–4738 (2005)
Schulz, B., Pruessmeyer, J., Maretzky, T., Ludwig, A., Blobel, C., Saftig, P., Reiss, K.: ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 102(10), 1192–1201 (2008)
Kenny, P., Bissell, M.: Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 117(2), 337–345 (2007)
Baker, A., Edwards, D., Murphy, G.: Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719–3727 (2002)
Chrico, R., Liu, X., Jung, K., Kim, H.: Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev. 25, 99–113 (2006)
Brew, K., Dinakarpandian, D., Nagase, H.: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochem. Biophys. Acta 1477, 267–283 (2000)
Yu, W., Yu, S., Meng, Q., Brew, K., Woessner, J.: TIMP-3 binds to sulphated glycosaminoglycans of the extracellular matrix. J. Biol. Chem. 275, 31226–31232 (2000)
Will, H., Atkinson, S., Butler, G., Smith, B., Murphy, G.: The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17119–17123 (1996)
Amour, A., Knight, C., Webster, A., Slocombe, P., Stephens, P., Knauper, V., Docherty, A., Murphy, G.: The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 473, 275–279 (2000)
Goldberg, G., Marmer, B., Grant, G., Eisen, A., Wilhelm, S., He, C.: Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteinases designated TIMP-2. Proc. Natl. Acad. Sci. USA 86, 8207–8211 (1989)
Wilhelm, S., Collier, I., Marmer, B., Eisen, A., Grant, G., Goldberg, G.: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 264(29), 17213–17221 (1989)
Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., Seiki, M.: A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370, 61–65 (1994)
Strongin, A., Collier, I., Bannikov, G., Marmer, B., Grant, G.: Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338 (1995)
Fernandez, C., Butterfield, C., Jackson, G., Moses, M.: Structural and functional uncoupling of the enzymatic and angiogenic inhibitory activities of tissue inhibitor metalloproteinase-2 (TIMP-2): loop 6 is a novel angiogenesis inhibitor. J. Biol. Chem. 278, 40989–40995 (2003)
Qi, J., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., Anand-Apte, B.: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat. Med. 9, 407–415 (2003)
Yu, W., Yu, S., Meng, Q., Brew, K., Woessner, J.: TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J. Biol. Chem. 275, 31226–31232 (2000)
Greene, J., Wang, M., Liu, Y., Raymond, L., Rosen, C., Shi, Y.: Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J. Biol. Chem. 271(48), 30375–30380 (1996)
Fernandez, C., Moses, M.: Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4. Biochem. Biophys. Res. Commun. 345, 523–529 (2006)
Koskivirta, I., Kassiri, Z., Rahkonen, O., Kiviranta, R., Oudir, G., McKee, T., Kyto, V., Saraste, A., Jokinen, E., Liu, P., Vuorio, E., Khokha, R.: Mice with tissue inhibitor of metalloproteinase 4 (Timp4) delection succumb to induced myocardial infarction but not to cardiac pressure overload. J. Biol. Chem. 285(32), 24487–24493 (2010)
Takahashi, C., Sheng, Z., Horan, T., Kitayama, H., Maki, M., Hitomi, K., Kitaura, Y., Takai, S., Sasahara, R., Horimoto, A., Ikawa, Y., Ratzkin, B., Arakawa, T., Noda, M.: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc. Natl. Acad. Sci. USA 95(22), 13221–13226 (1998)
Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R., Nishimura, S., Imamura, Y., Kitayama, H., Alexander, D., Ide, C., Horan, T., Arakawa, T., Yoshida, H., Nishikawa, S., Itoh, Y., Seiki, M., Itohara, S., Takahashi, C., Noda, M.: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107(6), 789–800 (2001)
Egeblad, M., Werb, Z.: New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002)
Thurston, G.: Complementary actions of VEGF and Angiopoietin-1 on blood vessel growth and leakage. J. Anat. 200(6), 575–580 (2002)
Thomas, M., Augustin, H.: The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12, 125–137 (2009)
Stratman, A., Malotte, K., Mahan, R., Davis, M., Davis, G.: Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009)
Stratman, A., Saunders, W., Sacharidou, A., Koh, W., Fisher, K., Zawieja, D., Davis, M., Davis, G.: Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114, 237–247 (2009)
Stratman, A., Schwindt, A., Malotte, K., Davis, G.: Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116, 4720–4730 (2010)
Greenberg, J., Shields, D., Barillas, S., Acevedo, L., Murphy, E., Huang, J., Scheppke, L., Stockmann, C., Johnson, R., Angle, N., Charesh, D.: A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456(7223), 809–813 (2008)
Jain, R.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005)
Miner, J., Yurchenco, P.: Laminin functions in tissue morphogenesis. Ann. Rev. Cell Dev. Biol. 20, 255–284 (2004)
Davis, G., Stratman, A., Sacharidou, A., Koh, W.: Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int. Rev. Cell Mol. Biol. 288, 101–165 (2011)
Quaegebeur, A., Segura, I., Carmeliet, P.: Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron 68(3), 321–323 (2010)
Brooks, P.C., Clark, R.A., Cheresh, D.A.: Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158), 569–571 (1994)
Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., Cheresh, D.A.: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7), 1157–1164 (1994)
Kim, S., Bell, K., Mousa, S., Varner, J.: Regulation of angiogenesis in vivo by ligation of integrin alpha5-beta1 with the central cell-binding domain of fibronectin. Am. J. Pathol. 156, 1345–1362 (2000)
Ponce, M., Nomizu, M., Kleinman, H.: An angiogenic laminin site and its antagonist bind through the alphav-beta3 and alpha5-beta1 integrins. FASEB J. 15, 1389–1397 (2001)
Stupack, D.G., Cheresh, D.A.: Integrins and angiogenesis. Curr. Top. Dev. Biol. 64, 207–238 (2004)
Ingber, D., Folkman, J.: How does extracellular matrix control capillary morphogenesis? Cell 58, 803–805 (1989)
Deroanne, C.F., Lapiere, C.M., Nusgens, B.V.: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49(3), 647–658 (2001)
Sieminski, A.L., Hebbel, R.P., Gooch, K.J.: The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297(2), 574–584 (2004)
Vailhe, B., Lecomte, M., Wiernsperger, N., Tranqui, L.: The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis 2(4), 331–344 (1998)
Kniazeva, E., Putnam, A.J.: Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1), C179–C187 (2009)
Urech, L., Bittermann, A.G., Hubbell, J.A., Hall, H.: Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials 26(12), 1369–1379 (2005)
Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S., Waterman, C.M.: Local cortical tension by myosin II guides 3D endothelial cell branching. Current Biol.: CB 19(3), 260–265 (2009)
Mammoto, A., Connor, K.M., Mammoto, T., Yung, C.W., Huh, D., Aderman, C.M., Mostoslavsky, G., Smith, L.E.H., Ingber, D.E.: A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009)
Califano, J.P., Reinhart-King, C.A.: The effects of substrate elasticity on endothelial cell network formation and traction force generation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 3343–3345 (2009)
Kniazeva, E., Putnam, A.: Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1), C179–C187 (2009)
Lee, P.F., Yeh, A.T., Bayless, K.J.: Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp. Cell Res. 315(3), 396–410 (2009)
Krishnan, L., Boying, J., Nguyen, H., Song, H., Weiss, J.: Interaction of angiogenic microvessels with the extracellular matrix. Am. J. Physiol. Heart Circ. Physiol. 293, H3650–H3658 (2007)
Vailhe, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L.: In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In Vitro Cell. Dev. Biol. Anim. 33, 763–773 (1997)
Vernon, R., Sage, E.: Contraction of fibrillar type I collagen by endothelial cells: a study in vitro. J. Cell. Biochem. 60, 185–197 (1996)
Ghajar, C.M., Blevins, K.S., Hughes, C.C., George, S.C., Putnam, A.J.: Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12(10), 2875–2888 (2006)
Kilarski, W.W., Samolov, B., Petersson, L., Kvanta, A., Gerwins, P.: Biomechanical regulation of blood vessel growth during tissue vascularization. Nat. Med. 15(6), 657–664 (2009)
Benest, A.V., Augustin, H.G.: Tension in the vasculature. Nat. Med. 15(6), 608–610 (2009)
Gerwins, P., Skoldenberg, E., Claesson-Welsh, L.: Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit. Rev. Oncol. Hematol. 34(3), 185–194 (2000)
Spinale, F.G.: Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87(4), 1285–1342 (2007)
Acknowledgments
The authors gratefully acknowledge funding from the National Heart, Lung, and Blood Institute (R01-HL-085339) and a CAREER award from the National Science Foundation (CBET-0968216). S.J.G. was supported by a predoctoral fellowship from NIH Cellular Biotechnology Training Grant (T32-GM-008353).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Grainger, S.J., Putnam, A.J. (2013). ECM Remodeling in Angiogenesis. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-30856-7_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30855-0
Online ISBN: 978-3-642-30856-7
eBook Packages: EngineeringEngineering (R0)