Microfluidic Devices for Angiogenesis

  • Vernella Vickerman
  • Choong Kim
  • Roger D. Kamm
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 12)


Cell culture has played a central role in developing our understanding of angiogenesis, and a wide variety of culture systems have been adapted for this purpose. Despite the value of this approach, many of the systems employed have suffered from a lack of precise control over culture conditions, an inability to visualize the process of angiogenesis in real time, and limitations in the ability to replicate the in vivo situation in which multiple cell types interact over distances of 100s of microns. With the advent of microfluidics, many of these obstacles can be overcome, and in vitro experiments can be produced with closer relevance to the in vivo situation. In this chapter, we describe the evolution of these microfluidic devices in the context of angiogenesis and describe current capabilities.


Microfluidic Device Vascular Network Microfluidic System Fluid Shear Stress Multiple Cell Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge support from the NIBIB, the National Science Foundation (EFRI-0735997 and CBET-0939511), and the Singapore-MIT Alliance for Research and Technology.


  1. 1.
    Li, W.W., et al.: The role of therapeutic angiogenesis in tissue repair and regeneration. Adv. Skin Wound Care. 18, 491–500 (2005)Google Scholar
  2. 2.
    Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438(15), 932–936 (2005)Google Scholar
  3. 3.
    Nikol, S.: Angiogenesis and cardiovascular disease: how long will angiogenesis last and how can we stop it. Dialogues Cardiovasc. Med. 6(3), 190–196 (2001)Google Scholar
  4. 4.
    Jain, R.K., et al.: Quantitative angiogenesis assays: progress and problems. Nat. Med. 3(11), 1203–1208 (1997)Google Scholar
  5. 5.
    Ide, A.G., Baker, N.H., Warren, S.L.: Vascularization of the brown pearce rabbit epithelium transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939)Google Scholar
  6. 6.
    Sandison, J.C.: A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Anat. Rec. 28, 281–287 (1924)Google Scholar
  7. 7.
    Jaffe, E.A., et al.: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Investig. 52, 2745–2756 (1973)Google Scholar
  8. 8.
    Gimbrone, M.A., et al.: Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60, 673–684 (1974)Google Scholar
  9. 9.
    Folkman, J., Haudenschild, C.C., Zetter, B.R.: Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 76(10), 5217–5221 (1979)Google Scholar
  10. 10.
    Folkman, J., Haudenschild, C.: Angiogenesis in vitro. Nature 288(11), 551–556 (1980)Google Scholar
  11. 11.
    Yoshida, A., Anand-Apte, B., Zetter, B.R.: Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13(1–2), 57–64 (1996)Google Scholar
  12. 12.
    Seymour, K.A., et al.: Vascular smooth muscle cell migration induced by domains of thrombospondin-1 is differentially regulated. Am. J. Surg. 202(5), 553–557 (2011)Google Scholar
  13. 13.
    Thomsen, R., Lade, N.A.: A Boyden chamber-based method for characterization of astrocyte protrusion localized RNA and protein. Glia. 59(11), 1782–1792 (2011)Google Scholar
  14. 14.
    Zabel, B.A., et al.: The novel chemokine receptor CXCR7 regulates trans- endothelial migration of cancer cells. Mol. Cancer 10, 73 (2011)Google Scholar
  15. 15.
    Lee, W.Y., et al.: In vitro neutrophil transepithelial migration. Methods Mol. Biol. 341, 205–215 (2006)Google Scholar
  16. 16.
    Schleef, R.R., Birdwell, C.R.: The effect of fibrin on endothelial cell migration in vitro. Tissue Cell 14(4), 629–636 (1982)Google Scholar
  17. 17.
    Pratt, D.M., et al.: Mechanisms of cytoskeletal regulation. modulation of aortic endothelial cell spectrin by extracellular matrix. Am. J. Pathol. 117(3), 349–354 (1984)MathSciNetGoogle Scholar
  18. 18.
    Tapper, D., et al.: Capillary endothelial cell migration: stimulating activity of aqueous humor from patients with ocular cancers. J. Natl. Cancer Inst. 71(3), 501–505 (1983)Google Scholar
  19. 19.
    Dewey Jr, C.F., et al.: The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103(3), 177–185 (1981)Google Scholar
  20. 20.
    Levesque, M.J., Nerem, R.M.: The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4), 341–347 (1985)Google Scholar
  21. 21.
    Eskin, S.G., et al.: Response of cultured endothelial cells to steady flow. Microvasc. Res. 28(1), 87–94 (1984)MathSciNetGoogle Scholar
  22. 22.
    Terry, S.C., Jernab, J.H., Angell, J.B.: A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26(12), 1880–1886 (1979)Google Scholar
  23. 23.
    Bassous, E., Taub, H.H., Kuhn, L.: Ink jet printing nozzle arrays etched in silicon. Appl. Phys. Lett. 31, 135–137 (1977)Google Scholar
  24. 24.
    Wilding, P., et al.: Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clin. Chem. 40, 43–47 (1994)Google Scholar
  25. 25.
    Duffy, D.C., et al.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998)Google Scholar
  26. 26.
    McDonald, J.C., et al.: Fabrication of microfluidic system in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000)Google Scholar
  27. 27.
    Chovan, T., Guttman, A.: Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 20(3), 116–122 (2002)Google Scholar
  28. 28.
    Verpoorte, E.: Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5), 677–712 (2002)Google Scholar
  29. 29.
    Watts, P., Haswell, S.J.: Microfluidic combinatorial chemistry. Curr. Opin. Chem. Biol. 7(3), 380–387 (2003)Google Scholar
  30. 30.
    Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based system biology. Mol. BioSyst. 2(2), 97–112 (2006)Google Scholar
  31. 31.
    Andersson, H., Berg, A.: Microfabrication and microfluidics for tissue engineering: sate of the art and future opportunities. Lab. Chip 4(2), 98–103 (2004)Google Scholar
  32. 32.
    Park, T.H., Shuler, M.L.: Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19(2), 243–253 (2003)Google Scholar
  33. 33.
    Jain, K.K.: Applications of biochips from diagnostics to personalized medicine. Curr. Opin. Drug Discov. Devel. 7(3), 285–289 (2004)Google Scholar
  34. 34.
    Wheeler, M.B., et al.: Application of sexed semen technology to in vitro embryo production in cattle. Theriogenology 65(1), 219–227 (2006)Google Scholar
  35. 35.
    Vickerman, V., et al.: Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab. Chip 8, 1468–1477 (2008)Google Scholar
  36. 36.
    Pardanaud, L., Yassine, F., Dieterlen-Lievre, F.: Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Dev. 105, 473–485 (1989)Google Scholar
  37. 37.
    James, J.M., Jennifer, L.W.: Vascularization of engineered tissues: approaches to promote angiogenesis. Curr. Top. Med. Chem. 7, 300–310 (2008)Google Scholar
  38. 38.
    Fong, G.-H.: Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11, 121–140 (2008)Google Scholar
  39. 39.
    Rankin, E.B., Giaccia, A.J.: The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15, 678–685 (2008)Google Scholar
  40. 40.
    Bernardini, G., et al.: Analysis of the role of chemokines in angiogenesis. J. Immunol. Methods 273(1–2), 83–101 (2003)Google Scholar
  41. 41.
    Cassavaugh, J., Lounsbury, K.: Hypoxia-mediated biological control. J. Cell. Biochem. 112, 735–744 (2011)Google Scholar
  42. 42.
    Hickey, M.M., Simon, M.C.: Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr. Top. Dev. Biol. 76, 217–257 (2006)Google Scholar
  43. 43.
    Shweiki, D., et al.: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992)Google Scholar
  44. 44.
    Carmeliet,P, et al.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(s.l), 435–39 (1996)Google Scholar
  45. 45.
    Ferrara, N., et al.: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996)Google Scholar
  46. 46.
    Park, J.E., et al.: Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9(6), 1085–1099 (2010)Google Scholar
  47. 47.
    Kunz, M., Ibrahim, S.M.: Molecular responses to hypoxia in tumor cells. Mol. Cancer 2(23), (2003)Google Scholar
  48. 48.
    Heinzman, J.M., Browe, S.L., Bush, J.E.: Comparison of angiogenesis- related factor expression in primary tumor cultures under normal and hypoxic growth conditions. Cancer Cell Int. 8, 11 (2008)Google Scholar
  49. 49.
    Fukamara, D., et al.: Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998)Google Scholar
  50. 50.
    Tuxhorn, J.A., et al.: Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 62, 3298–3307 (2002)Google Scholar
  51. 51.
    Darland, D.C., D’Amore, P.A.: Blood vessel maturation: vascular development comes of age. J. Clin. Invest. 103(2), 157–158 (1999)Google Scholar
  52. 52.
    Szekanecz, Z., Koch, A. E.: Chemokines and cytokines in inflammatory angiogenesis. [Book Section] Angiogenesis in inflammation; mechanisms and clinical correlates/book auth. Seed Michael P and Walsh David A. [s.l.] Birkhauser BaseGoogle Scholar
  53. 53.
    Kiefer, F., Siekmann, A.F.: The role of chemokines and their receptor in angiogenesis. Cell Mol. Life Sci. 68, 2811–2830 (2011)Google Scholar
  54. 54.
    Seed, M.P., Walsh, D.A.: Angiogenesis in inflamation; mechanisms and clinical correlates. Birkhauser Basel, Germany (2008)Google Scholar
  55. 55.
    Nagy, J.A., et al.: Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009)Google Scholar
  56. 56.
    Brem, H., Tomic-Canic, M.: Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117, 1219–1222 (2007)Google Scholar
  57. 57.
    Eming, S.A., Krieg, T., Davidson, J.M.: Gene therapy and wound healing. Clin. Dermatol. 25, 79–92 (2007)Google Scholar
  58. 58.
    Takeshita, S., et al.: Therapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments sollateral vessel formation in a rabbit ischemic hind-limb model. J. Clin. Invest. 93, 662–670 (1994)Google Scholar
  59. 59.
    Cao, R., et al.: Angiogenic synergy, vascular stability and improvement of hind-limb ischemia by a combination PDGF-BB and FGF-2. Nat. Med. 9, 604–613 (2003)Google Scholar
  60. 60.
    Nikol, S., et al.: Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol. Ther. 16, 972–978 (2008)Google Scholar
  61. 61.
    Thackham, J.A., McElwain, D.L., Long, R.J.: The use of hyperbaric oxygen therapy to treat chronic wounds: a review. Wound Repair Regen. 16, 321–330 (2008)Google Scholar
  62. 62.
    Cipolla, J., et al.: Negative pressure wound therapy: unusual and innovative applications. OPUS 12. Scientist 2, 15–29 (2008)Google Scholar
  63. 63.
    Baldwin, C., et al.: Topical negative pressure stimulates endothelial migration and proliferation: a suggested mechanism for improved integration of Integra. Ann. Plast. Surg. 62, 92–96 (2009)Google Scholar
  64. 64.
    Potter, M.J., et al.: In vitro optimization of topical negative pressure regimens for angiogenesis into synthetic dermal replacements. Burns 34, 164–174 (2008)Google Scholar
  65. 65.
    Umit, A., et al.: Regulation of angiogenic activity of human endometrial endothelial cells in culture by ovarian steroids. J. Clin. Endocrinol. Metab. 62(11), 5794–5802 (2004)Google Scholar
  66. 66.
    Nagel, T., et al.: Shear stresses selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest. 94, 885–891 (1994)Google Scholar
  67. 67.
    Davies, P.F., Tripathi, S.C.: Mechanical stress mechanisms and the cell: an endothelial paradigm. Circ. Res. 72, 239–245 (1993)Google Scholar
  68. 68.
    Davies, P.F.: Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Rev. Cardiol. 6, 16–26 (2009)Google Scholar
  69. 69.
    Li, Z., Guan, J.: Hydrogels for cardiac tissue engineering. Polymers 3, 740–761 (2011)Google Scholar
  70. 70.
    Even-Ram, S., Yamada, K.M.: Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17, 524–532 (2005)Google Scholar
  71. 71.
    Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003)Google Scholar
  72. 72.
    Lim, D., et al.: Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab. Chip 3, 318–323 (2003)Google Scholar
  73. 73.
    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of cell life and death. Science 276(30), 1425–1428 (1997)Google Scholar
  74. 74.
    Johnson, M., Liddiard, G., Eddings, M., Gale, B.: Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices. J. Micromech. Microeng. 19, 1–9 (2009)Google Scholar
  75. 75.
    Toepke, M.W., Beebe, D.J.: PDMS absorption of small molecules and consequences in microfluidic applications. Lab. Chip 6, 1484–1486 (2006)Google Scholar
  76. 76.
    Borenstein, J., et al.: Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices 4, 167–175 (2002)Google Scholar
  77. 77.
    Shin, M., et al.: Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed. Microdevices 6, 269–278 (2004)Google Scholar
  78. 78.
    Golden, A.P., Tien, J.: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab. Chip 7, 720–725 (2007)Google Scholar
  79. 79.
    Raghavan, S., Desai, R.A., Kwon, Y., Mrksich, M., Chen, C.S.: Micropatterned dynamically adhesive substrates for cell migration. Langmuir 26, 17733–17738 (2010)Google Scholar
  80. 80.
    Chrobak, K.M., Potter, D.R., Tien, J.: Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–196 (2006)Google Scholar
  81. 81.
    Price, G.M., et al.: Effect of mechanical factors on the function of engineered humanblood microvessels in microfluidic collagengels. Biomaterials 31, 6182–6189 (2010)Google Scholar
  82. 82.
    Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19(5), 1573–1579 (2003)Google Scholar
  83. 83.
    Gagnon, E., Cattaruzzi, P., Griffith, M.: Human vascular endothelial cells with extended life spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5, 21–33 (2002)Google Scholar
  84. 84.
    Nicosia, R.F., Tchao, R., Leighton, J.: Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Bes. 43, 2159–2166 (1983)Google Scholar
  85. 85.
    Nakatsu, M.N., Hughes, C.C.: An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443, 65–82 (2008)Google Scholar
  86. 86.
    Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001)Google Scholar
  87. 87.
    Vailhé, B., Vittet, D., Feige, J–.J.: In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81(4), 439–452 (2001)Google Scholar
  88. 88.
    Barkefors, I., Thorslund, S., Nikolajeff, F., Kreuger, J.: A fluidic device to study directional abgiogenesis in complex tissue and organ culture models. Lab. Chip 9, 529–535 (2009)Google Scholar
  89. 89.
    Carrion, B., et al.: Recreating the perivascular niche ex vivo using a microfluidic approach. Biotechnol. Bioeng. 107(6), 1020–1028 (2010)Google Scholar
  90. 90.
    Chung, S., et al.: Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab. Chip 9, 269–275 (2009)Google Scholar
  91. 91.
    Jeong, G.S., et al.: Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed. Microdevices 13(4), 717–723 (2011)Google Scholar
  92. 92.
    Yamamura, N., Sudo, R., Ikeda, M., Tanishita, K.: Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13, 1443–1453 (2007)Google Scholar
  93. 93.
    Shin, Y., et al.: In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab. Chip 11, 2175–2181 (2011)Google Scholar
  94. 94.
    Kang, H., Bayless, K.J., Kaunas, R.: Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. Heart Circ. Physiol. 295, H2087–H2097 (2008)Google Scholar
  95. 95.
    Tarbell, J.M.: Shear stress and endothelial transport barrier. J Cardiovasc. Res. 87, 329–330 (2010)Google Scholar
  96. 96.
    Sarin, H., et al.: Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J. Transl. Med. 7, 51 (2009)Google Scholar
  97. 97.
    Vera, R.H., et al.: Interstitial fluid flow intensity modulates endothelial sprouting in restricted src-activated cell clusters during capillary morphogenesis. Tissue Eng. Part A 15(1), 175–185 (2009)Google Scholar
  98. 98.
    Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. PNAS 108(37), 15342–15347 (2011)Google Scholar
  99. 99.
    DeMaio, L., Tarbell, J.M., Scaduto Jr, R.C., Gardner, T.W., Antonetti, D.A.: A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286(2H), 731–741 (2004)Google Scholar
  100. 100.
    Huang, C.P., et al.: Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab. Chip 9, 1740–1748 (2009)Google Scholar
  101. 101.
    Doran, M.R., et al.: A cell migration device that maintains a defined surface with no cellular damage during wound edge generation. Lab. Chip 9, 2364–2369 (2009)Google Scholar
  102. 102.
    Sudo, R., et al.: Transport-mediated angiogenesis in 3D epithelial co culture. FASEB J. 23(37), 2155–2164 (2009)Google Scholar
  103. 103.
    Mack, P.J.: Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J. Biol. Chem. 284(13), 8412–8420 (2009)Google Scholar
  104. 104.
    Prabhakar, N.R., Fields, R.D., Baker, T., Fletcher, E.C.: Intermittent hypoxia: cell to system. Am. J. Physiol. Lung Cell Mol. Physiol. 281L, 524–528 (2001)Google Scholar
  105. 105.
    Verbridge, S.S., et al.: Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. A 16, 2133–2141 (2010)Google Scholar
  106. 106.
    Truskey, G.A.: Endothelial cell vascular smooth muscle cell co-culture assay for high throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic molecules. Int. J. High Throughput Screening 1, 171–181 (2010)Google Scholar
  107. 107.
    Griffith, C.K., et al.: Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 11, 257–266 (2005)Google Scholar
  108. 108.
    Chen, A.A., Underhill, G.H., Bhatia, S.N.: Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr. Biol. 2, 517–527 (2010)Google Scholar
  109. 109.
    Seaman, M.E., Peirce, S.M., Kelly, K.: Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis. PLoS ONE 6(6), 1–8 (2011)Google Scholar
  110. 110.
    Wood, L.B., Kamm, R.D., Asada, H.H.: A stochastic broadcast feedback approach to regulating cell population morphology for microfluidic angiogenesis platforms. IEEE Trans. Biomed. Eng. 56(9), 2299–2303 (2009)Google Scholar
  111. 111.
    Ferrara, N.: Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25(4), 581–611 (2004)Google Scholar
  112. 112.
    Metheny-Barlow, L.J., Li, L.Y.: The enigmatic role of angiopoietin-1 in tumor angiogenesis. Cell Res. 13(5), 309–317 (2003)Google Scholar
  113. 113.
    Nissen, L.J., et al.: Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest. 117(10), 2766–2777 (2007)Google Scholar
  114. 114.
    Li, A., et al.: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 170(6), 3369–3376 (2003)Google Scholar
  115. 115.
    Deshane, J., et al.: Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1- dependent mechanism. JEM 204(3), 605–618 (2007)Google Scholar
  116. 116.
    Ferrari, G., et al.: VEGF, a prosurvival factor, acts in concert with TGF-beta to induce endothelial cell apoptosis. Proc. Natl. Acad. Sci. U.S.A 103(46), 17260–17265 (2006)Google Scholar
  117. 117.
    Zhang, Y.W., Su, Y., Volpert, O.V., Vande Woude, G.F.: Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc. Natl. Acad. U.S.A 100(22), 12718–12723 (2003)Google Scholar
  118. 118.
    O’Reilly, M.S., et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 79(2), 315–328 (1994)Google Scholar
  119. 119.
    O’Reilly, M.S., et al.: Endostatin; an endogenoud inhibitor of angiogenesis and tumor growth. Cell 88(2), 277–285 (1997)Google Scholar
  120. 120.
    Volpert, O.V., et al.: Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188(6), 1039–1046 (1998)Google Scholar
  121. 121.
    Nishimura, Y., et al.: IL-13 attenuates vascular tube formation via JAK2-STAT6 pathway. Circ. J. 72(3), 469–475 (2008)Google Scholar
  122. 122.
    Bikfalvi, A.: Platelet factor 4: an inhibitor of angiogenesis. Semin. Thromb. Hemost. 30(3), 379–385 (2004)Google Scholar
  123. 123.
    Good, D.J., et al.: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Aca. Sci. U.S.A. 87(17), 6624–6628 (1990)Google Scholar
  124. 124.
    Pike, S.E., et al.: Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188(12), 2349–2356 (1998)Google Scholar
  125. 125.
    Folkman, J.: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971)Google Scholar
  126. 126.
    Sapieha, P., et al.: Proliferative retinopathies: angiogenesis that blinds. Int. J. Biochem. Cell Biol. 42, 5–12 (2010)Google Scholar
  127. 127.
    Di, S.R., Felice, F., Balbarini, A.: Angiogenesis as a risk factor for plaque vulnerability. Curr. Pharm. Des. 15(10), 1095–1106 (2009)Google Scholar
  128. 128.
    Moulton, K.S.: Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr. Opin. Lipidol. 17(5), 548–555 (2006)Google Scholar
  129. 129.
    Virmani, R., et al.: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25, 2054–2061 (2005)Google Scholar
  130. 130.
    Koch, A. E., Distler, O.:Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res. Ther. 9(2), S3 (2007) (doi: 10.1186/ar2187)
  131. 131.
    Heidenreich, R., Rocken, M., Ghoreschi, K.: Angiogenesis drives psoriasis pathogenesis. Int. J. Exp. Path. 90, 232–248 (2009)Google Scholar
  132. 132.
    Ribatti, D., et al.: Angiogenesis in asthma. Clin. Exp. Allergy 39, 1815–1821 (2009)Google Scholar
  133. 133.
    Taylor, R.N., et al.: Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci. 16(2), 140–146 (2009)Google Scholar
  134. 134.
    Coulon, S., et al.: Angiogenesis in chronic liver disease and its complications. Liver Int. 31(2), 146–162 (2010)Google Scholar
  135. 135.
    Freedman, S.B., Isner, J.M.: Therapuetic angiogenesis for coronary artery disease. Ann. Intern. Med. 136, 54–71 (2002)Google Scholar
  136. 136.
    Arenillas, J.F., et al.: The role of angiogenesis in damage and recovery from ischemic stroke. Curr. Treat. Options Cardiovasc. Med. 9, 205–212 (2007)Google Scholar
  137. 137.
    Cui, T., Kirsner, R. S., Jie, L, et al..: Angiogenesis in chronic wounds. [Book Section]//Advances in Wound Care. 1/book auth. Sen, C. K., [s.l.], Mary Ann Liebert, Inc., 1 (2010)Google Scholar
  138. 138.
    Vailhé, B., Vittet, D., Feige, J.: In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81(4), 439–452 (2001)Google Scholar
  139. 139.
    Chung, S., et al.: Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. Adv. Mater. 21, 4863–4867 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vernella Vickerman
    • 1
  • Choong Kim
    • 1
  • Roger D. Kamm
    • 1
  1. 1.Mechanical Engineering and Biological Engineering, MITCambridgeUSA

Personalised recommendations