Barrier Maintenance in Neovessels

  • Geerten P. van Nieuw Amerongen
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 12)


A hallmark of many pathologies is vascular leak. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell–cell and cell-substrate contacts, soluble mediators, and biomechanical forces. Despite its tremendous medical importance, no specific therapies are available directly targeting the endothelium to prevent or reduce vascular permeability. Endothelial cells constantly equilibrate contractile and adhesive forces to maintain vascular barrier integrity. Intracellular signalling, and in particular the involvement of small Rho GTPases in endothelial hyperpermeability responses to many inflammatory stimuli through actin/myosin-mediated cellular contractility, is well-understood. Surprisingly less is known about maintenance of the basal endothelial barrier integrity. Recent live cell imaging studies revealed that highly confluent endothelial monolayers actively maintain barrier integrity by a continuous remodeling of their cell–cell contacts, accompanied by a rapid opening and closure of small inter-endothelial gaps. Moreover, evidence is accumulating that mechanical cues determined by the local microenvironment of ECs are of eminent importance to the integrity of the endothelial monolayer. Here we will review chemical and mechanical signaling involved in maintenance of the integrity of the endothelial barrier.


Adherens Junction Endothelial Barrier Rac1 Activation Endothelial Monolayer S1P1 Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nagy, J.A., Dvorak, A.M., Dvorak, H.F.: Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2(2), a006544 (2012)CrossRefGoogle Scholar
  2. 2.
    van Hinsbergh, V.W, van Nieuw Amerongen, G.P.: Intracellular signalling involved in modulating human endothelial barrier function. J. Anat. 200(6), 549–560 (2002)CrossRefGoogle Scholar
  3. 3.
    Krishnan, R., Klumpers, D.D., Park, C.Y., Rajendran, K., Trepat, X., van Bezu, J., van Hinsbergh, V.W., Carman, C.V., Brain, J.D., Fredberg J.J., Butler, J.P., van Nieuw Amerongen, G.P.: Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300(1), C146–C154 (2011)CrossRefGoogle Scholar
  4. 4.
    Mehta, D., Malik, A.B.: Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86(1), 279–367 (2006)CrossRefGoogle Scholar
  5. 5.
    Goldenberg, N.M., Steinberg, B.E., Slutsky, A.S., Lee WL.: Broken barriers: a new take on sepsis pathogenesis. Sci. Transl. Med. 3(88):88ps25 (2011)Google Scholar
  6. 6.
    Gomez, G.A., McLachlan, R.W., Yap, A.S.: Productive tension: force-sensing and homeostasis of cell–cell junctions. Trends Cell Biol. 21(9), 499–505 (2011)CrossRefGoogle Scholar
  7. 7.
    Tarbell, J.M.: Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87(2), 320–330 (2010)CrossRefGoogle Scholar
  8. 8.
    Birukov, K.G.: Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc. Res. 77(1), 46–52 (2009)CrossRefGoogle Scholar
  9. 9.
    Essler, M., Amano, M., Kruse, H.J., Kaibuchi, K., Weber, P.C., Aepfelbacher, M.: Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273(34), 21867–21874 (1998)CrossRefGoogle Scholar
  10. 10.
    van Nieuw Amerongen, G.P., Draijer, R., Vermeer, M.A., van Hinsbergh, V.W.: Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ. Res. 83(11), 1115–1123 (1998)CrossRefGoogle Scholar
  11. 11.
    Murakami, M., Simons, M.: Regulation of vascular integrity. J. Mol. Med. (Berl). 87(6), 571–582 (2009)CrossRefGoogle Scholar
  12. 12.
    Weis, S.M., Cheresh, D.A.: Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437(7058), 497–504 (2005)CrossRefGoogle Scholar
  13. 13.
    Doggett, T.M., Breslin, J.W.: Study of the actin cytoskeleton in live endothelial cells expressing GFP-actin. J. Vis. Exp. (57), e3187 (2011) Google Scholar
  14. 14.
    Spindler, V., Schlegel, N., Waschke, J.: Role of GTPases in control of microvascular permeability. Cardiovasc. Res. 87(2), 243–253 (2010)CrossRefGoogle Scholar
  15. 15.
    Wojciak-Stothard, B., Ridley, A.J.: Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 39(4–5), 187–199 (2002)CrossRefGoogle Scholar
  16. 16.
    Hu, Y.L., Chien, S.: Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem. Biophys. Res. Commun. 357(4), 871–876 (2007)CrossRefGoogle Scholar
  17. 17.
    Opp, D., Wafula, B., Lim, J., Huang, E., Lo, J.C., Lo, C.M.: Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24(8), 2625–2629 (2009)CrossRefGoogle Scholar
  18. 18.
    Lo, C.M., Keese, C.R., Giaever, I.: Monitoring motion of confluent cells in tissue culture. Exp. Cell Res. 204(1), 102–109 (1993)CrossRefGoogle Scholar
  19. 19.
    van Nieuw Amerongen, G.P., van Delft, S., Vermeer, M.A., Collard, J.G., van Hinsbergh, V.W.: Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87(4), 335–340 (2000)CrossRefGoogle Scholar
  20. 20.
    Kouklis, P., Konstantoulaki, M., Vogel, S., Broman, M., Malik, A.B.: Cdc42 regulates the restoration of endothelial barrier function. Circ. Res. 94(2), 159–166 (2004)CrossRefGoogle Scholar
  21. 21.
    van Nieuw Amerongen, G.P., Beckers, C.M., Achekar, I.D., Zeeman, S., Musters, R.J., van Hinsbergh, V.W.: Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler. Thromb. Vasc. Biol. 27(11), 2332–2339 (2007)CrossRefGoogle Scholar
  22. 22.
    van Nieuw Amerongen, G.P., van Hinsbergh, V.W.: Endogenous RhoA inhibitor protects endothelial barrier. Circ. Res. 101(1), 7–9 (2007)CrossRefGoogle Scholar
  23. 23.
    Wildenberg, G.A., Dohn, M.R., Carnahan, R.H., Davis, M.A., Lobdell, N.A., Settleman, J., Reynolds, A.B.: p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127(5), 1027–1039 (2006)CrossRefGoogle Scholar
  24. 24.
    David, S., Ghosh, C.C., Mukherjee, A., Parikh, S.M.: Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler. Thromb. Vasc. Biol. 31(11), 2643–2652 (2011)CrossRefGoogle Scholar
  25. 25.
    Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N., Kaibuchi, K.: Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J. Cell Sci. 114(Pt 10), 1829–1838 (2001)Google Scholar
  26. 26.
    Beckers, C.M., van Hinsbergh, V.W., van Nieuw Amerongen, G.P.: Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb. Haemost. 103(1), 40–55 (2010)CrossRefGoogle Scholar
  27. 27.
    Kleaveland, B., Zheng, X., Liu, J.J., Blum, Y., Tung, J.J., Zou, Z., Sweeney, S.M., Chen, M., Guo, L., Lu, M.M., Zhou, D., Kitajewski, J., Affolter, M., Ginsberg, M.H., Kahn, M.L.: Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat. Med. 15(2), 169–176 (2009)CrossRefGoogle Scholar
  28. 28.
    Whitehead, K.J., Chan, A.C., Navankasattusas, S., Koh, W., London, N.R., Ling, J., Mayo, A.H., Drakos, S.G., Jones, C.A., Zhu, W., Marchuk, D.A., Davis, G.E., Li, D.Y.: The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat. Med. 15(2), 177–184 (2009)CrossRefGoogle Scholar
  29. 29.
    Schubert, W., Frank, P.G., Woodman, S.E., Hyogo, H., Cohen, D.E., Chow, C.W., Lisanti, M.P.: Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J. Biol. Chem. 277(42), 40091–40098 (2002)CrossRefGoogle Scholar
  30. 30.
    Siddiqui, M.R., Komarova, Y.A., Vogel, S.M., Gao, X., Bonini, M.G., Rajasingh, J., Zhao, Y.Y., Brovkovych, V., Malik, A.B.: Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J. Cell Biol. 193(5), 841–850 (2011)CrossRefGoogle Scholar
  31. 31.
    Thibeault, S., Rautureau, Y., Oubaha, M., Faubert, D., Wilkes, B.C., Delisle, C., Gratton, J.P.: S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol. Cell 39(3), 468–476 (2010)CrossRefGoogle Scholar
  32. 32.
    van Nieuw Amerongen, G.P., van Hinsbergh, V.W.: Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul. Pharmacol. 39(4–5), 257–272 (2002)CrossRefGoogle Scholar
  33. 33.
    Augustin, H.G., Koh, G.Y., Thurston, G., Alitalo, K.: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10(3), 165–177 (2009)CrossRefGoogle Scholar
  34. 34.
    van der Heijden, M., van Nieuw Amerongen, G.P., van Bezu, J., Paul, M.A., Groeneveld, A.B., van Hinsbergh, V.W.: Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 6(8), e23448 (2011)CrossRefGoogle Scholar
  35. 35.
    van der Heijden, M., van Nieuw Amerongen, G.P., Chedamni, S., van Hinsbergh, V., Groeneveld, A.B.: The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert. Opin. Ther. Targets. 13(1), 39–53 (2009)CrossRefGoogle Scholar
  36. 36.
    Komarova, Y., Malik, A.B.: FGF signaling preserves the integrity of endothelial adherens junctions. Dev. Cell 15(3), 335–336 (2008)CrossRefGoogle Scholar
  37. 37.
    Murakami, M., Nguyen, L.T., Zhuang, Z.W., Moodie, K.L., Carmeliet, P., Stan, R.V., Simons, M.: The FGF system has a key role in regulating vascular integrity. J. Clin. Invest. 118(10), 3355–3366 (2008)CrossRefGoogle Scholar
  38. 38.
    Miyashita, Y., Ozawa, M.: Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J. Biol. Chem. 282(15), 11540–11548 (2007)CrossRefGoogle Scholar
  39. 39.
    Wang, L., Dudek, S.M.: Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc. Res. 77(1), 39–45 (2009)CrossRefGoogle Scholar
  40. 40.
    McVerry, B.J., Garcia, J.G.: Endothelial cell barrier regulation by sphingosine 1-phosphate. J. Cell Biochem. 92(6), 1075–1085 (2004)CrossRefGoogle Scholar
  41. 41.
    Lee, M.J., Thangada, S., Claffey, K.P., Ancellin, N., Liu, C.H., Kluk, M., Volpi, M., Sha’afi, R.I., Hla, T.: Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3), 301–312 (1999)CrossRefGoogle Scholar
  42. 42.
    Sanchez, T., Estrada-Hernandez, T., Paik, J.H., Wu, M.T., Venkataraman, K., Brinkmann, V., Claffey, K., Hla, T.: Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278(47), 47281–47290 (2003)CrossRefGoogle Scholar
  43. 43.
    Hoffman, B.D., Grashoff, C., Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356), 316–323 (2011)CrossRefGoogle Scholar
  44. 44.
    Eyckmans, J., Boudou, T., Yu, X., Chen, C.S.: A Hitchhiker’s guide to mechanobiology. Dev. Cell 21(1), 35–47 (2011)CrossRefGoogle Scholar
  45. 45.
    Adji, A., O’Rourke, M.F., Namasivayam, M.: Arterial stiffness, its assessment, prognostic value, and implications for treatment. Am. J. Hypertens. 24(1), 5–17 (2011)CrossRefGoogle Scholar
  46. 46.
    Sell, D.R., Monnier, V.M.: Molecular basis of arterial stiffening role of glycation. Gerontology (2012) January 4Google Scholar
  47. 47.
    Lee, S., Zeiger, A., Maloney, J.M., Kotecki, M., Van Vliet, K.J., Herman, I.M.: Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche. J. Phys.: Condens. Matter 22(19), 194115 (2010)Google Scholar
  48. 48.
    Huynh, J., Nishimura, N., Rana, K., Peloquin, J.M., Califano, J.P., Montague, C.R., King, M.R., Schaffer, C.B., Reinhart-King, C.A.: Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3(112):112ra122 (2011)Google Scholar
  49. 49.
    Califano, J.P., Reinhart-King, C.A.: Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1), 68–75 (2010)CrossRefGoogle Scholar
  50. 50.
    Liu, Z., Tan, J.L., Cohen, D.M., Yang, M.T., Sniadecki, N.J., Ruiz, S.A., Nelson, C.M., Chen, C.S.: Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl. Acad. Sci. U S A 107(22), 9944–9949 (2010)CrossRefGoogle Scholar
  51. 51.
    Maruthamuthu, V., Sabass, B., Schwarz, U.S., Gardel, M.L.: Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc. Natl. Acad. Sci. U S A. 108(12), 4708–4713 (2011)CrossRefGoogle Scholar
  52. 52.
    Mege, R.M., Gavard, J., Lambert, M.: Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18(5), 541–548 (2006)CrossRefGoogle Scholar
  53. 53.
    Ladoux, B., Anon, E., Lambert, M., Rabodzey, A., Hersen, P., Buguin, A., Silberzan, P., Mege, R.M.: Strength dependence of cadherin-mediated adhesions. Biophys. J. 98(4), 534–542 (2010)CrossRefGoogle Scholar
  54. 54.
    Kametani, Y., Takeichi, M.: Basal-to-apical cadherin flow at cell junctions. Nat. Cell Biol. 9(1), 92–98 (2007)CrossRefGoogle Scholar
  55. 55.
    le Duc, Q., Shi, Q., Blonk, I., Sonnenberg, A., Wang, N., Leckband, D., de Rooij, J.: Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189(7), 1107–1115 (2010)CrossRefGoogle Scholar
  56. 56.
    Stroka, K.M.: randa-Espinoza H. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118(6), 1632–1640 (2011)CrossRefGoogle Scholar
  57. 57.
    Ohayon, J., Gharib, A.M., Garcia, A., Heroux, J., Yazdani, S.K., Malve, M., Tracqui, P., Martinez, M.A., Doblare, M., Finet, G., Pettigrew, R.I.: Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Am. J. Physiol. Heart Circ. Physiol. 301(3), H1097–H1106 (2011)CrossRefGoogle Scholar
  58. 58.
    Cancel, L.M., Tarbell, J.M.: The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am. J. Physiol. Heart Circ. Physiol. 300(3), H769–H776 (2011)CrossRefGoogle Scholar
  59. 59.
    Murakami, M.: Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int. J. Vasc. Med. 2012, 293641 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physiology Institute for Cardiovascular Research, VU University Medical CenterAmsterdamThe Netherlands
  2. 2.Faculty of MedicineLaboratory of Physiology, VU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations