Mechanical and Chemical Regulation of Arterial and Venous Specification

  • Thomas N. Sato
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 12)


The fact that blood circulates through vessels was realized by William Harvey in the early seventeenth century. The blood flows away from the heart via arteries delivering oxygen and nutrients to peripheral organs and return to the heart via veins. Until late the 1990s, the distinction between artery and vein was recognized solely based on anatomical and function differences, basis, and it had been believed that arterial and venous specific characteristics are controlled by the respective hemodynamic forces that they are exposed to. However, in the past 15 years or so, it has become clear that they are also distinguished by the molecules that they express. Furthermore, their phenotypes are also regulated by genetic, hence, molecular (chemical), programs. In this chapter, I will summarize historical perspectives of the recognition of arteries and veins, and will review recent advance in our understating of mechanisms underlying arterial and venous specification mediated by mechanical and chemical signals. I conclude this chapter by proposing three models, morphogenetic, habituation, and integrative models, explaining how these two classes of signals become integrated to specify arteries and veins.


Genetic Program Notch Signaling Zebrafish Embryo PI3K Signaling Arterial Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writing of this book chapter was financially supported by JSPS (Kiban S), Takeda Science Foundation and The Uehara Memorial Foundation to T.N.S.


  1. 1.
    Harvey, W.: Exercitatio anatomica de motu cordis et sanguinis in animalibus (1628)Google Scholar
  2. 2.
    Garcia-Cardena, G., Gimbrone, M.A., Jr.: Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb. Exp. Pharmacol. 176(Pt 2) 79–95 (2006)CrossRefGoogle Scholar
  3. 3.
    Gimbrone Jr, M.A.: Endothelial dysfunction, hemodynamic forces, and atherosclerosis. Thromb. Haemost. 82, 722–726 (1999)Google Scholar
  4. 4.
    Gimbrone Jr, M.A.: Vascular endothelium, hemodynamic forces, and atherogenesis. Am. J. Pathol. 155, 1–5 (1999)CrossRefGoogle Scholar
  5. 5.
    Gimbrone Jr, M.A., Nagel, T., Topper, J.N.: Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J. Clin. Invest. 100, S61–S65 (1997)Google Scholar
  6. 6.
    Gimbrone, M.A., Jr., Resnick, N., Nagel, T., Khachigian, L.M., Collins, T., and Topper, J.N.: Hemodynamics, endothelial gene expression, and atherogenesis. Ann. N Y. Acad. Sci. 811, 1–10; discussion 10–11 (1997)Google Scholar
  7. 7.
    Resnick, N., Gimbrone Jr, M.A.: Hemodynamic forces are complex regulators of endothelial gene expression. FASEB. J. 9, 874–882 (1995)Google Scholar
  8. 8.
    Topper, J.N., Gimbrone Jr, M.A.: Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today 5, 40–46 (1999)CrossRefGoogle Scholar
  9. 9.
    Papaioannou, T.G., Stefanadis, C.: Vascular wall shear stress: basic principles and methods. Hellenic. J. Cardiol. 46, 9–15 (2005)Google Scholar
  10. 10.
    Jones, E.A., Yuan, L., Breant, C., Watts, R.J., Eichmann, A.: Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135, 2479–2488 (2008)CrossRefGoogle Scholar
  11. 11.
    Chong, D.C., Koo, Y., Xu, K., Fu, S., Cleaver, O.: Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. Dev. Dyn. 240, 2153–2165 (2011)CrossRefGoogle Scholar
  12. 12.
    le Noble, F., Moyon, D., Pardanaud, L., Yuan, L., Djonov, V., Matthijsen, R., Breant, C., Fleury, V., Eichmann, A.: Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)CrossRefGoogle Scholar
  13. 13.
    Cornhill, J.F., Roach, M.R.: A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis 23, 489–501 (1976)CrossRefGoogle Scholar
  14. 14.
    Wong, L.C., Langille, B.L.: Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ. Res. 78, 799–805 (1996)CrossRefGoogle Scholar
  15. 15.
    Wang, H.U., Chen, Z.F., Anderson, D.J.: Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998)CrossRefGoogle Scholar
  16. 16.
    Zhong, T.P., Childs, S., Leu, J.P., Fishman, M.C.: Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001)CrossRefGoogle Scholar
  17. 17.
    Zhong, T.P., Rosenberg, M., Mohideen, M.A., Weinstein, B., Fishman, M.C.: Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000)CrossRefGoogle Scholar
  18. 18.
    Weinstein, B.M., Stemple, D.L., Driever, W., Fishman, M.C.: Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat. Med. 1, 1143–1147 (1995)CrossRefGoogle Scholar
  19. 19.
    Lawson, N.D., Scheer, N., Pham, V.N., Kim, C.H., Chitnis, A.B., Campos-Ortega, J.A., Weinstein, B.M.: Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001)Google Scholar
  20. 20.
    Villa, N., Walker, L., Lindsell, C.E., Gasson, J., Iruela-Arispe, M.L., Weinmaster, G.: Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech. Dev. 108, 161–164 (2001)CrossRefGoogle Scholar
  21. 21.
    Jones, E.A., Clement-Jones, M., Wilson, D.I.: JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype. J. Med. Genet. 37, 658–662 (2000)CrossRefGoogle Scholar
  22. 22.
    Loomes, K.M., Underkoffler, L.A., Morabito, J., Gottlieb, S., Piccoli, D.A., Spinner, N.B., Baldwin, H.S., Oakey, R.J.: The expression of Jagged1 in the developing mammalian heart correlates with cardiovascular disease in Alagille syndrome. Hum. Mol. Genet. 8, 2443–2449 (1999)CrossRefGoogle Scholar
  23. 23.
    Krebs, L.T., Xue, Y., Norton, C.R., Shutter, J.R., Maguire, M., Sundberg, J.P., Gallahan, D., Closson, V., Kitajewski, J., Callahan, R., et al.: Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000)Google Scholar
  24. 24.
    Lindner, V., Booth, C., Prudovsky, I., Small, D., Maciag, T., Liaw, L.: Members of the Jagged/Notch gene families are expressed in injured arteries and regulate cell phenotype via alterations in cell matrix and cell-cell interaction. Am. J. Pathol. 159, 875–883 (2001)CrossRefGoogle Scholar
  25. 25.
    Reaume, A.G., Conlon, R.A., Zirngibl, R., Yamaguchi, T.P., Rossant, J.: Expression analysis of a Notch homologue in the mouse embryo. Dev. Biol. 154, 377–387 (1992)CrossRefGoogle Scholar
  26. 26.
    Del Amo, F.F., Smith, D.E., Swiatek, P.J., Gendron-Maguire, M., Greenspan, R.J., McMahon, A.P., Gridley, T.: Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development 115, 737–744 (1992)Google Scholar
  27. 27.
    Uyttendaele, H., Closson, V., Wu, G., Roux, F., Weinmaster, G., Kitajewski, J.: Notch4 and Jagged-1 induce microvessel differentiation of rat brain endothelial cells. Microvasc. Res. 60, 91–103 (2000)CrossRefGoogle Scholar
  28. 28.
    Shirayoshi, Y., Yuasa, Y., Suzuki, T., Sugaya, K., Kawase, E., Ikemura, T., Nakatsuji, N.: Proto-oncogene of int-3, a mouse Notch homologue, is expressed in endothelial cells during early embryogenesis. Genes Cells 2, 213–224 (1997)CrossRefGoogle Scholar
  29. 29.
    Shutter, J.R., Scully, S., Fan, W., Richards, W.G., Kitajewski, J., Deblandre, G.A., Kintner, C.R., Stark, K.L.: Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313–1318 (2000)Google Scholar
  30. 30.
    Duarte, A., Hirashima, M., Benedito, R., Trindade, A., Diniz, P., Bekman, E., Costa, L., Henrique, D., Rossant, J.: Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004)CrossRefGoogle Scholar
  31. 31.
    Fischer, A., Schumacher, N., Maier, M., Sendtner, M., Gessler, M.: The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004)CrossRefGoogle Scholar
  32. 32.
    Kokubo, H., Miyagawa-Tomita, S., Tomimatsu, H., Nakashima, Y., Nakazawa, M., Saga, Y., Johnson, R.L.: Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ. Res. 95, 540–547 (2004)CrossRefGoogle Scholar
  33. 33.
    Krebs, L.T., Shutter, J.R., Tanigaki, K., Honjo, T., Stark, K.L., Gridley, T.: Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004)CrossRefGoogle Scholar
  34. 34.
    Visconti, R.P., Richardson, C.D., Sato, T.N.: Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. U S A. 99, 8219–8224 (2002)CrossRefGoogle Scholar
  35. 35.
    Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M., Anderson, D.J.: Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002)CrossRefGoogle Scholar
  36. 36.
    Mukouyama, Y.S., Gerber, H.P., Ferrara, N., Gu, C., Anderson, D.J.: Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132, 941–952 (2005)CrossRefGoogle Scholar
  37. 37.
    Lawson, N.D., Vogel, A.M., Weinstein, B.M.: Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002)CrossRefGoogle Scholar
  38. 38.
    Peterson, R.T., Shaw, S.Y., Peterson, T.A., Milan, D.J., Zhong, T.P., Schreiber, S.L., MacRae, C.A., Fishman, M.C.: Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599 (2004)CrossRefGoogle Scholar
  39. 39.
    Hong, C.C., Peterson, Q.P., Hong, J.Y., Peterson, R.T.: Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366–1372 (2006)CrossRefGoogle Scholar
  40. 40.
    Lawson, N.D., Mugford, J.W., Diamond, B.A., Weinstein, B.M.: phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 17, 1346–1351 (2003)CrossRefGoogle Scholar
  41. 41.
    Takahashi, T., Shibuya, M.: The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 14, 2079–2089 (1997)CrossRefGoogle Scholar
  42. 42.
    Liu, Z.J., Shirakawa, T., Li, Y., Soma, A., Oka, M., Dotto, G.P., Fairman, R.M., Velazquez, O.C., Herlyn, M.: Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell. Biol. 23, 14–25 (2003)CrossRefGoogle Scholar
  43. 43.
    Liu, Z.J., Xiao, M., Balint, K., Soma, A., Pinnix, C.C., Capobianco, A.J., Velazquez, O.C., Herlyn, M.: Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB. J. 20, 1009–1011 (2006)CrossRefGoogle Scholar
  44. 44.
    Seo, S., Fujita, H., Nakano, A., Kang, M., Duarte, A., Kume, T.: The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458–470 (2006)CrossRefGoogle Scholar
  45. 45.
    Kume, T., Jiang, H., Topczewska, J.M., Hogan, B.L.: The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 15, 2470–2482 (2001)CrossRefGoogle Scholar
  46. 46.
    Thurston, G., Yancopoulos, G.D.: Gridlock in the blood. Nature 414, 163–164 (2001)CrossRefGoogle Scholar
  47. 47.
    You, L.R., Lin, F.J., Lee, C.T., DeMayo, F.J., Tsai, M.J., Tsai, S.Y.: Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005)CrossRefGoogle Scholar
  48. 48.
    Krishnan, V., Elberg, G., Tsai, M.J., Tsai, S.Y.: Identification of a novel sonic hedgehog response element in the chicken ovalbumin upstream promoter-transcription factor II promoter. Mol. Endocrinol. 11, 1458–1466 (1997)Google Scholar
  49. 49.
    Devic, E., Rizzoti, K., Bodin, S., Knibiehler, B., Audigier, Y.: Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech. Dev. 84, 199–203 (1999)CrossRefGoogle Scholar
  50. 50.
    Saint-Geniez, M., Argence, C.B., Knibiehler, B., Audigier, Y.: The msr/apj gene encoding the apelin receptor is an early and specific marker of the venous phenotype in the retinal vasculature. Gene Expr. Patterns 3, 467–472 (2003)CrossRefGoogle Scholar
  51. 51.
    Cox, C.M., D’Agostino, S.L., Miller, M.K., Heimark, R.L., Krieg, P.A.: Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol. 296, 177–189 (2006)CrossRefGoogle Scholar
  52. 52.
    Ishida, J., Hashimoto, T., Hashimoto, Y., Nishiwaki, S., Iguchi, T., Harada, S., Sugaya, T., Matsuzaki, H., Yamamoto, R., Shiota, N., et al.: Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J. Biol. Chem. 279, 26274–26279 (2004)CrossRefGoogle Scholar
  53. 53.
    Cermenati, S., Moleri, S., Cimbro, S., Corti, P., Del Giacco, L., Amodeo, R., Dejana, E., Koopman, P., Cotelli, F., Beltrame, M.: Sox18 and Sox7 play redundant roles in vascular development. Blood 111, 2657–2666 (2008)CrossRefGoogle Scholar
  54. 54.
    Herpers, R., van de Kamp, E., Duckers, H.J., Schulte-Merker, S.: Redundant roles for sox7 and sox18 in arteriovenous specification in zebrafish. Circ. Res. 102, 12–15 (2008)CrossRefGoogle Scholar
  55. 55.
    Pendeville, H., Winandy, M., Manfroid, I., Nivelles, O., Motte, P., Pasque, V., Peers, B., Struman, I., Martial, J.A., Voz, M.L.: Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Dev. Biol. 317, 405–416 (2008)CrossRefGoogle Scholar
  56. 56.
    Chun, C.Z., Kaur, S., Samant, G.V., Wang, L., Pramanik, K., Garnaas, M.K., Li, K., Field, L., Mukhopadhyay, D., Ramchandran, R.: Snrk-1 is involved in multiple steps of angioblast development and acts via notch signaling pathway in artery-vein specification in vertebrates. Blood 113, 1192–1199 (2009)CrossRefGoogle Scholar
  57. 57.
    Nicoli, S., Tobia, C., Gualandi, L., De Sena, G., Presta, M.: Calcitonin receptor-like receptor guides arterial differentiation in zebrafish. Blood 111, 4965–4972 (2008)CrossRefGoogle Scholar
  58. 58.
    Loughna, S., Sato, T.N.: A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol. Cell 7, 233–239 (2001)CrossRefGoogle Scholar
  59. 59.
    Sato, T.N., Loughna, S., Davis, E.C., Visconti, R.P., Richardson, C.D.: Selective functions of angiopoietins and vascular endothelial growth factor on blood vessels: the concept of “vascular domain”. Cold Spring Harb. Symp. Quant. Biol. 67, 171–180 (2002)CrossRefGoogle Scholar
  60. 60.
    Yancopoulos, G.D., Klagsbrun, M., Folkman, J.: Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93, 661–664 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Biological Sciences, Laboratory of Biodynamics and Integrative BiologyNara Institute of Science and TechnologyIkomaJapan
  2. 2.Centenary InstituteSydneyAustralia
  3. 3.Department of Biomedical EngineerigCornell UniversityIthacaUSA

Personalised recommendations