Skip to main content

Advanced Coarsening Schemes for Graph Partitioning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7276))

Abstract

The graph partitioning problem is widely used and studied in many practical and theoretical applications. Today multilevel strategies represent one of the most effective and efficient generic frameworks for solving this problem on large-scale graphs. Most of the attention in designing multilevel partitioning frameworks has been on the refinement phase. In this work we focus on the coarsening phase, which is responsible for creating structurally similar to the original but smaller graphs. We compare different matching- and AMG-based coarsening schemes, experiment with the algebraic distance between nodes, and demonstrate computational results on several classes of graphs that emphasize the running time and quality advantages of different coarsenings.

Partially supported by DFG SA 933/10-1 and CSCAPES institute, a DOE project.

This paper is a short version of the technical report [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. Technical Report ANL/MCS-P2016-0112, Argonne National Laboratory (2012)

    Google Scholar 

  2. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fiduccia, C.M., Mattheyses, R.M.: A Linear-Time Heuristic for Improving Network Partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)

    Google Scholar 

  5. Sanders, P., Schulz, C.: Distributed Evolutionary Graph Partitioning. In: 12th Workshop on Algorithm Engineering and Experimentation (2011)

    Google Scholar 

  6. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific simulations. In: Dongarra, J., et al. (eds.) CRPC Par. Comp. Handbook. Morgan Kaufmann (2000)

    Google Scholar 

  7. Pellegrini, F.: Scotch home page, http://www.labri.fr/pelegrin/scotch

  8. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph organization. Multiscale Modeling & Simulation 9(1), 407–423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Chevalier, C., Safro, I.: Comparison of Coarsening Schemes for Multilevel Graph Partitioning. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 191–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research 131(1), 325–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a Scalable High Quality Graph Partitioner. In: 24th IEEE International Parallal and Distributed Processing Symposium (2010)

    Google Scholar 

  13. Chen, J., Safro, I.: Algebraic distance on graphs. SIAM Journal on Scientific Computing 33(6), 3468–3490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T., Haimes, R., Chan, T. (eds.) Proceeding of the Yosemite Educational Symposium on Multiscale and Multiresolution Methods. Springer (October 2000)

    Google Scholar 

  15. Maue, J., Sanders, P.: Engineering Algorithms for Approximate Weighted Matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242–255. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Safro, I., Sanders, P., Schulz, C.: Benchmark with Potentially Hard Graphs for Partitioning Problem, http://www.mcs.anl.gov/~safro/hardpart.html

  17. Bader, D., Meyerhenke, H., Sanders, P., Wagner, D.: 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering, http://www.cc.gatech.edu/dimacs10/

  18. Lescovec, J.: Stanford Network Analysis Package (SNAP), http://snap.stanford.edu/index.html

  19. Safro, I., Ron, D., Brandt, A.: Multilevel algorithms for linear ordering problems. Journal of Experimental Algorithmics 13, 1.4–1.20 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Safro, I., Sanders, P., Schulz, C. (2012). Advanced Coarsening Schemes for Graph Partitioning. In: Klasing, R. (eds) Experimental Algorithms. SEA 2012. Lecture Notes in Computer Science, vol 7276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30850-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30850-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30849-9

  • Online ISBN: 978-3-642-30850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics