Advertisement

Engineering Efficient Paging Algorithms

  • Gabriel Moruz
  • Andrei Negoescu
  • Christian Neumann
  • Volker Weichert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7276)

Abstract

In the field of online algorithms paging is a well studied problem. LRU is a simple paging algorithm which incurs few cache misses and supports efficient implementations. Algorithms outperforming LRU in terms of cache misses exist, but are in general more complex and thus not automatically better, since their increased runtime might annihilate the gains in cache misses. In this paper we focus on efficient implementations for the OnOPT class described in [13], particularly on an algorithm in this class, denoted RDM, that was shown to typically incur fewer misses than LRU. We provide experimental evidence on a wide range of cache traces showing that our implementation of RDM is competitive to LRU with respect to runtime. In a scenario incurring realistic time penalties for cache misses, we show that our implementation consistently outperforms LRU, even if the runtime of LRU is set to zero.

Keywords

Competitive Ratio Online Algorithm Cache Size Competitive Analysis Time Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging algorithms. Theoretical Computer Science 234(1-2), 203–218 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bein, W.W., Larmore, L.L., Noga, J., Reischuk, R.: Knowledge state algorithms. Algorithmica 60(3), 653–678 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Systems Journal 5(2), 78–101 (1966)CrossRefGoogle Scholar
  4. 4.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brodal, G.S., Moruz, G., Negoescu, A.: OnlineMIN: A fast strongly competitive randomized paging algorithm. In: Proc. 9th Workshop on Approximation and Online Algorithms, pp. 164–175 (2011)Google Scholar
  7. 7.
    Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. Journal of Algorithms 12(4), 685–699 (1991)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fiat, A., Rosen, Z.: Experimental studies of access graph based heuristics: Beating the LRU standard? In: Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 63–72 (1997)Google Scholar
  9. 9.
    Kaplan, S.F., Smaragdakis, Y., Wilson, P.R.: Flexible reference trace reduction for VM simulations. ACM Transactions on Modeling and Computer Simulation 13(1), 1–38 (2003)CrossRefGoogle Scholar
  10. 10.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 77–119 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal on Computing 30, 300–317 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algorithm. Algorithmica 6(6), 816–825 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Moruz, G., Negoescu, A.: Outperforming LRU via competitive analysis on paramtrized inputs for paging. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1669–1680 (2012)Google Scholar
  14. 14.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tanenbaum, A.S.: Modern operating systems, 3rd edn. Pearson Education (2008)Google Scholar
  16. 16.
    Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriel Moruz
    • 1
  • Andrei Negoescu
    • 1
  • Christian Neumann
    • 1
  • Volker Weichert
    • 1
  1. 1.Goethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations