Modelling of Communication Platforms Using Algebraic High-Level Nets and Their Processes

  • Karsten Gabriel
  • Hartmut Ehrig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7365)


Algebraic high-level (AHL) nets are a well-known modelling technique based on Petri nets with algebraic data types, which allows to model the communication structure and the data flow within one modelling framework. In this paper we give an overview how to model the system behaviour of communication platforms and scenarios based on algebraic high-level nets and their processes. For modelling the evolution of communication platforms we show by example how to use transformations of AHL-nets inspired by the theory of graph transformation. As running example we show the modelling and evolution of Apache Wave platforms and Waves.


Graph Transformation Graph Grammar Input Place Communication Platform Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zilles, S.: Algebraic specification of data types. Project MAC Progress Report 11, 28–52. MIT (1974)Google Scholar
  2. 2.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Abstract data types as initial algebras and the correctness of data representations. In: Proc. of Conf. on Computer Graphics (1975)Google Scholar
  3. 3.
    Guttag, J.: The specification and application to programming of abstract data types. PhD thesis, University of Toronto (1975)Google Scholar
  4. 4.
    Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Parametrized Data Types in Algebraic Specification Languages. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 157–168. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  5. 5.
    Hupbach, U., Kaphengst, H., Reichel, H.: Initial algebraic specification of data types, parameterized data types and algorithms. Technical Report 15, VEB Robotron ZFT, Dresden (1980)Google Scholar
  6. 6.
    CIP Language Group: Report on a wide spectrum language for program specification and development. Technical Report TUM-I8104, TU München (1981); also available as Springer LNCS 183Google Scholar
  7. 7.
    Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathematik, Universität Bonn (1962)Google Scholar
  8. 8.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  9. 9.
    Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computation 88(2), 105–155 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rozenberg, G.: Behaviour of Elementary Net Systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 60–94. Springer, Heidelberg (1987)Google Scholar
  11. 11.
    Reisig, W.: Petrinetze, Eine Einführung. Springer, Berlin (1985)zbMATHGoogle Scholar
  12. 12.
    Jensen, K.: Coloured Petri Nets: A High-Level Language for System Design and Analysis. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 342–416. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Krämer, B.: Segras – a formal and semigraphical language combining petri nets and abstract data types for the specification of distributed systems. In: Proceedings of the 9th International Conference on Software Engineering. ICSE 1987, pp. 116–125. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  14. 14.
    Krämer, B.: Concepts, Syntax and semantics of Segras, a specification language for distributed systems. PhD thesis, Technische Universtät Berlin (1989)Google Scholar
  15. 15.
    Hummert, U.: Algebraische High-Level Netze. PhD thesis, Technische Universtät Berlin (1989)Google Scholar
  16. 16.
    Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science 80 (1991)Google Scholar
  17. 17.
    Dimitrovici, C., Hummert, U., Petrucci, L.: Semantics, Composition and Net Properties of Algebraic High-Level Nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 93–117. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic high-level net transformation systems. Mathematical Structures in Computer Science 80, 217–259 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ehrig, H., Reisig, W.: An Algebraic View on Petri Nets. Bulletin of the EATCS 61, 52–58 (1997)zbMATHGoogle Scholar
  20. 20.
    Ehrig, H., Hoffmann, K., Padberg, J., Baldan, P., Heckel, R.: High-Level Net Processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 191–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Ehrig, H.: Behaviour and Instantiation of High-Level Petri Net Processes. Fundamenta Informaticae 65(3), 211–247 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey). In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  23. 23.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  24. 24.
    Gabriel, K.: Composition and transformation of high-level petri net-processes. Diploma thesis, Technische Universtät Berlin (2009)Google Scholar
  25. 25.
    Ehrig, H., Gabriel, K.: Transformation of algebraic high-level nets and amalgamation of processes with applications to communication platforms. International Journal of Software and Informatics 5, Part1, 207–229 (2011)Google Scholar
  26. 26.
    Gabriel, K.: Algebraic high-level nets and processes applied to communication platforms. Technical Report 2010/14, Technische Universität Berlin (2010)Google Scholar
  27. 27.
    Gabriel, K., Ehrig, H.: Modelling evolution of communication platforms and scenarios based on transformations of high-level nets and processes. Theoretical Computer Science (2012)Google Scholar
  28. 28.
    Gabriel, K.: Modelling Evolution of Communication Platforms and Scenarios based on Transformations of High-Level Nets and Processes – Extended Version. Technical Report 2011/08, Technische Universität Berlin (2011)Google Scholar
  29. 29.
    Hoffmann, K., Modica, T.: Formal modeling of communication platforms using reconfigurable algebraic high-level nets. ECEASST 30, 1–25 (2010)Google Scholar
  30. 30.
    Google (February 2012),
  31. 31.
    Apache Software Foundation (February 2012),
  32. 32.
    Apache Wave (February 2012),
  33. 33.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer (1985)Google Scholar
  34. 34.
    Goltz, U., Reisig, W.: The Non-sequential Behavior of Petri Nets. Information and Control 57(2/3), 125–147 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional Modeling of Reactive Systems Using Open Nets. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 502–518. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in TCS. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karsten Gabriel
    • 1
  • Hartmut Ehrig
    • 1
  1. 1.Technische Universtät BerlinGermany

Personalised recommendations