Coordinating Parallel Mobile Ambients to Solve SAT Problem in Polynomial Number of Steps

  • Bogdan Aman
  • Gabriel Ciobanu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7274)


In this paper we present a version of mobile ambients, called parMA, having a weak form of replication and a parallel semantics. We investigate how parMA can solve intractable problems in a polynomial number of computational steps. We use parMA to give a semiuniform solution to a well-known strong NP-complete problem, namely to the Boolean satisfiability problem (SAT).


Turing Machine Operational Semantic Boolean Variable Reduction Rule Computational Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aman, B., Ciobanu, G.: Mobile Ambients with Timers and Types. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Aman, B., Ciobanu, G.: Timed Mobile Ambients for Network Protocols. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 234–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computation. Springer (2011)Google Scholar
  4. 4.
    Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation Can’t Be Traced: Preliminary Report. In: 15th ACM Symposium on Principles of Programming Languages, pp. 229–239 (1988)Google Scholar
  5. 5.
    Boer, F., Gabbrielli, M., Meo, M.: A Timed Linda Language and its Denotational Semantics. Fundamenta Informaticae 63 (2004)Google Scholar
  6. 6.
    Borodin, A.: On Relating Time and Space to Size and Depth. SIAM Journal of Computing 6, 733–744 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bugliesi, M., Castagna, G., Crafa, S.: Access Control for Mobile Agents: the Calculus of Boxed Ambients. ACM Transactions on Programming and Systems 26, 57–124 (2004)CrossRefGoogle Scholar
  8. 8.
    Busi, N.: On the Computational Power of the Mate/Bud/Drip Brane Calculus: Interleaving vs. Maximal Parallelism. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Busi, N., Zavattaro, G.: On the Expressive Power of Movement and Restriction in Pure Mobile Ambients. Theoretical Computer Science 322, 477–515 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cardelli, L., Gordon, A.: Mobile Ambients. Theoretical Computer Science 240, 177–213 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Charatonik, W., Gordon, A.D., Talbot, J.-M.: Finite-Control Mobile Ambients. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 295–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ciobanu, G., Zakharov, V.A.: Encoding Mobile Ambients into the π-Calculus. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 148–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Fournet, C., Lévy, J.-J., Schmitt, A.: An Asynchronous, Distributed Implementation of Mobile Ambients. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  16. 16.
    Teller, D., Zimmer, P., Hirschkoff, D.: Using Ambients to Control Resources. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Levi, F., Sangiorgi, D.: Mobile Safe Ambients. ACM Transactions on Programming and Systems 25, 1–69 (2003)CrossRefGoogle Scholar
  18. 18.
    Maffeis, S., Phillips, I.: On the Computational Strength of Pure Ambient Calculi. Theoretical Computer Science 330, 501–551 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press (1999)Google Scholar
  20. 20.
    Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press (2009)Google Scholar
  21. 21.
    Moller, F.: Axioms for Concurrency. PhD Thesis, Department of Computer Science, University of Edinburgh (1989)Google Scholar
  22. 22.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1995)Google Scholar
  23. 23.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325, 141–167 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Bogdan Aman
    • 1
    • 2
  • Gabriel Ciobanu
    • 1
    • 2
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.“A.I.Cuza” UniversityIaşiRomania

Personalised recommendations