9 The Role of the Stonesphere for the Interactions Between Mycorrhizal Fungi and Mycorrhizosphere Bacteria During Mineral Weathering

  • N. Koele
Part of the The Mycota book series (MYCOTA, volume 9)


The stonesphere encompasses rock fragments in the soil profile that, through physical and chemical properties, provide a habitat for microbial communities. Especially under stress, such as drought, acidification or pathogens, the stonesphere can act as a buffer and a refuge for microorganisms and their metabolic processes. Both mycorrhizal fungi, notably ectomycorrhizal fungi, and bacteria have been shown to be able to access nutrient sources from the stonesphere through mineral weathering. Ectomycorrhizal fungi, through biosensing, may detect nutrient rich mineral structures in soil and, by secreting specific carbohydrates, may actively select bacterial communities capable of mineral weathering. Other interactions between mycorrhizal fungi and bacteria may be in selectively utilizing organic and inorganic nutrient sources. Interactions between mycorrhizal fungi and bacteria in the stonesphere may change with soil depth or over time, depending on environmental conditions.


Microbial Community Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Bulk Soil Rock Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author was partially supported by funding from the Royal Society of New Zealand Marsden Fund.


  1. Agnelli A, Celi L, Degl’Innocenti A, Corti G, Ugolini FC (2000) Chemical and spectroscopic characterization of the humic substances from sandstone-derived rock fragments. Soil Sci 165:314–327CrossRefGoogle Scholar
  2. Arocena JM, Velde B, Robertson SJ (2012) Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops. Appl Clay Sci. doi: 10.1016/j.clay.2011.06.013
  3. Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167CrossRefGoogle Scholar
  4. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411PubMedCrossRefGoogle Scholar
  5. Barker W, Welch S, Chu S, Banfield J (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551Google Scholar
  6. Bormann BT, Wang D, Snyder MC, Bormann FH, Benoit G, April R (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155CrossRefGoogle Scholar
  7. Bornemann L, Herbst M, Welp G, Vereecken H, Amelung W (2011) Rock fragments control size and saturation of organic carbon pools in agricultural topsoil. Soil Sci Soc Am J 75:1898–1907CrossRefGoogle Scholar
  8. Boyle J, Voigt G (1973) Biological weathering of silicate minerals. Plant Soil 38:191–201CrossRefGoogle Scholar
  9. Brakensiek D, Rawls W (1994) Soil containing rock fragments: effects on infiltration. Catena 23:99–110CrossRefGoogle Scholar
  10. Brooks DD, Chan R, Starks ER, Grayston SJ, Jones MD (2011) Ectomycorrhizal hyphae structure components of the soil bacterial community for decreased phosphatase production. FEMS Microbiol Ecol 76:245–255PubMedCrossRefGoogle Scholar
  11. Calvaruso C, Turpault M, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecol 54:567–577CrossRefGoogle Scholar
  12. Certini G, Campbell C, Edwards A (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128CrossRefGoogle Scholar
  13. Childs SW, Flint AL (1990) Physical properties of forest soils containing rock fragments. Sustained productivity of forest soils. In: Gessel SP, Lacate DS, Weetman GF, Powers RF (eds) Sustained productivity of forest soils. University of British Columbia, Vancouver, pp 95–121Google Scholar
  14. Corti G, Agnelli A, Ugolini F (1997) Release of Al by hydroxy interlayered vermiculite and hydroxy interlayered smectite during determination of cation exchange capacity in fine earth and rock fragments fractions. Eur J Soil Sci 48:249–262CrossRefGoogle Scholar
  15. Corti G, Ugolini F, Agnelli A, Certini G, Cuniglio R, Berna F, Fernandez-Sanjurjo MJ (2002) The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur J Soil Sci 53:283–298CrossRefGoogle Scholar
  16. de Turk E (1919) Potassium-bearing minerals as a source of potassium for plant growth. Soil Sci 8:269–301CrossRefGoogle Scholar
  17. Deutschmann G (1998) New aspects of buffering processes in stony soils. Chemosphere 36:1149–1154CrossRefGoogle Scholar
  18. Dickie I, Xu B, Koide R (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535CrossRefGoogle Scholar
  19. Epstein EG, Struchtemeyer W (1966) Effects of stones on runoff, erosion, and soil moisture 1. Soil Sci Soc Am J 30:638CrossRefGoogle Scholar
  20. Fernandez-Sanjurjo MJ, Corti G, Agnelli A (2011) Genesis and role of the skeleton water-extractable fines in volcanic soils. Soil Sci Soc Am J 75:1019–1031CrossRefGoogle Scholar
  21. Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156CrossRefGoogle Scholar
  22. Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165CrossRefGoogle Scholar
  23. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas Fir-Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedGoogle Scholar
  24. Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2004) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328CrossRefGoogle Scholar
  25. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  26. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643PubMedCrossRefGoogle Scholar
  27. Gleeson D, Kennedy N, Clipson N, Melville K, Gadd G, McDermott F (2006) Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecol 51:526–534CrossRefGoogle Scholar
  28. Glowa K, Arocena J, Massicotte H (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111CrossRefGoogle Scholar
  29. Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290CrossRefGoogle Scholar
  30. Heisner U, Raber B, Hildebrand EE (2004) The importance of the soil skeleton for plant-available nutrients in sites of the Southern Black Forest, Germany. Eur J For Res 123:249–257CrossRefGoogle Scholar
  31. Hildebrand E (1990) The spatial heterogeneity of chemical properties in acid forest soils and its importance for tree nutrition. Water Air Soil Pollut 54:183–191CrossRefGoogle Scholar
  32. Jackson LP, Hall IV, Aalders LE (2011) Lowbush blueberry seedling growth as affected by soil type. Can J Soil Sci 52:113–115CrossRefGoogle Scholar
  33. Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53CrossRefGoogle Scholar
  34. Kern M, Raber B, Hildebrand EE (2006) Verfahren zur Ermittlung des Nährelementpotenzials des Gesamtbodens unter besonderer Berücksichtigung des Bodenskeletts und deren Integration in die Bodenzustandserhebung im Wald (BZE II). Abschlussbericht Institut für Bodenkunde und Waldernährungslehre Universität Freiburg, Freiburg, p 97Google Scholar
  35. Kimmins J (1987) Forest ecology. Macmillan, New YorkGoogle Scholar
  36. Koele N, Turpault MP, Hildebrand EE, Uroz S, Frey-Klett P (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942CrossRefGoogle Scholar
  37. Koele N, Hildebrand EE, Schack-Kirchner H (2010) Effects of weathering state of coarse-soil fragments on tree-seedling nutrient uptake. J Plant Nut Soil Sci 173:245–251CrossRefGoogle Scholar
  38. Koele N, Storch F, Hildebrand EE (2011) The coarse-soil fraction is the main living space of fungal hyphae in the BhBs horizon of a podzol. J Plant Nutr Soil Sci 174:750–753. doi: 10.1002/jpln.201000296 CrossRefGoogle Scholar
  39. Kohler M, Hildebrand E (2004) New aspects of element cycling and forest nutrition. Towards the sustainable use of Europe’s forests—forest ecosystem and landscape research. Sci Chall Opport 49:171–180Google Scholar
  40. Kohler M, Wilpert KV, Hildebrand EE (2000) The soil skeleton as a source for the short-term supply of “base cations” in forest soils of the Black Forest (Germany). Water Air Soil Poll 122:37–48CrossRefGoogle Scholar
  41. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254PubMedCrossRefGoogle Scholar
  42. Lavee H, Poesen JWA (1991) Overland flow generation and continuity on stone-covered soil surfaces. Hydrol Process 5:345–360CrossRefGoogle Scholar
  43. Leake J, Duran A, Hardy K, Johnson I, Beerling DJ, Banwart SA, Smits MM (2008) Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering. Mineral Mag 72:85–89CrossRefGoogle Scholar
  44. Leyval C, Berthelin J (1989) Interactions between laccaria laccata, agrobacterium radiobacter and beech roots: influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110CrossRefGoogle Scholar
  45. Martín-García J, Delgado G, Parraga J, Gamiz E, Delgado R (1999) Chemical, mineralogical and micro morphological study of coarse fragments in Mediterranean red soils. Geoderma 90:23–47CrossRefGoogle Scholar
  46. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant Soil 179:141–150CrossRefGoogle Scholar
  47. Poesen J, Ingelmo-Sanchez F (1992) Runoff and sediment yield from topsoils with different porosity as affected by rock fragment cover and position. Catena 19:451–474CrossRefGoogle Scholar
  48. Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28CrossRefGoogle Scholar
  49. Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200PubMedCrossRefGoogle Scholar
  50. Read D, Armstrong W (1972) A relationship between oxygen transport and the formation of the ectotrophic mycorrhizal sheath in conifer seedlings. New Phytol 71:49–53CrossRefGoogle Scholar
  51. Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem 34:1371–1374CrossRefGoogle Scholar
  52. Rivard R, De Kimpe C (1980) Propriétés de quelques sols riches en graviers dans la région de Québec. Can J Soil Sci 60:263–273CrossRefGoogle Scholar
  53. Rosling A, Landeweert R, Lindahl B, Larsson KH, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783CrossRefGoogle Scholar
  54. Rosling A, Lindahl BD, Finlay RD (2004) Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802CrossRefGoogle Scholar
  55. Schack-Kirchner H, von Wilpert K, Hildebrand EE (2000) The spatial distribution of soil hyphae in structured spruce-forest soils. Plant Soil 224:195–205CrossRefGoogle Scholar
  56. Schüler G, Butz-Braun R (2001) Nährstoffversorgung aus dem Bodenskelett eines Buntsandstein-Standortes im Pfälzerwald in Abhängigkeit von Tiefenstufen und Gesteinsgefüge. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, pp 693–694Google Scholar
  57. Sverdrup H (1990) The kinetics of base cation release due to primary silicate weathering. Lund University Press, Lund, p 246Google Scholar
  58. Tisdall J, Smith S, Rengasamy P (1997) Aggregation of soil by fungal hyphae. Austral J Soil Res 35:55–60CrossRefGoogle Scholar
  59. Ugolini FC, Corti G, Dufey JE, Agnelli A, Certini G (2001) Exchangeable Ca, Mg, and K of rock fragments and fine earth from sandstone and siltstone derived soils and their availability to grass. J Plant Nutr Soil Sci 164:309–315CrossRefGoogle Scholar
  60. Uroz S, Calvaruso C, Turpault M, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027PubMedCrossRefGoogle Scholar
  61. Uroz S, Calvaruso C, Turpault M, Frey-Klett P (2009) Mineral weatheringby bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387PubMedCrossRefGoogle Scholar
  62. van Wesemael B, Poesen J, Kosmas CS, Danalatos NG, Nachtergale J (1996) Evaporation from cultivated soils containing rock fragments. J Hydrol 182:65–82CrossRefGoogle Scholar
  63. Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131CrossRefGoogle Scholar
  64. Wallander H, Hagerberg D, Åberg G (2006) Uptake of 87Sr from microcline and biotite by ectomycorrhizal fungi in a Norway spruce forest. Soil Biol Biochem 38:2487–2490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Landcare ResearchLincolnNew Zealand

Personalised recommendations