Skip to main content

18 Fungal and Bacterial Volatile Organic Compounds: An Overview and Their Role as Ecological Signaling Agents

  • Chapter
  • First Online:

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

Both fungi and bacteria emit many volatile organic compounds (VOCs) as mixtures of low molecular mass alcohols, aldehydes, esters, terpenoids, thiols, and other small molecules that easily volatilize. Most determination (separation and identification) of VOCs now relies on gas chromatography–mass spectrometry (GC-MS) but developments in “electronic nose” technology promise to revolutionize the field. Microbial VOC profiles are both complex and dynamic: the compounds produced and their abundance vary with the producing species, the age of the colony, water availability, the substrate, the temperature, and other environmental parameters. The single most commonly reported volatile from fungi is 1-octen-3-ol which is a breakdown product of linoleic acid. It functions as a hormone within many fungal species, serves as both an attractant and deterrent for certain species of arthropods, and exhibits toxicity at relatively low concentrations in model systems. Bacterial and fungal VOCs have been studied by scientists from a broad range of subdisciplines in both theoretical and applied contexts. VOCs are exploited for their food and flavor properties, their use as indirect indicators of microbial growth, their ability to stimulate plant growth, and their ability to attract insect pests. Because these compounds can diffuse a long way from their point of origin, they are excellent chemical signaling molecules (semiochemicals) in non-aqueous habitats and facilitate the ability of microbes to engage in “chemical conversations.” The physiological effects of bacterial and fungal VOCs in host–pathogen relationships and in mediating interspecific associations in natural ecosystem functioning is an emerging frontier for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson D, Sinha RN, Mills JT (1980) Mycotoxin and odor formation in moist cereal grain during granary storage. Cereal Chem 57:346–351

    CAS  Google Scholar 

  • Abramson D, Sinha RN, Mills JT (1983) Mycotoxin and odor formation in barley stored at 16 and 20 % moisture in Manitoba. Cereal Chem 60:350–355

    CAS  Google Scholar 

  • Agrios GN (2008) Plant pathology, 5th edn. Academic, San Diego

    Google Scholar 

  • Aldrich JR (1988) Chemical ecology of the heteroptera. Annu Rev Entomol 33:211–238

    Google Scholar 

  • Allen PJ (1957) Properties of a volatile fraction of uredospores of Puccinia graminis var. tritici affecting their germination and development. I. Biological activity. Plant Physiol 32:385–389

    PubMed  CAS  Google Scholar 

  • Arora K, Chand S, Malhotra BD (2006) Recent developments in bio-molecular electronics techniques for food pathogens. Anal Chim Acta 568:259–274

    PubMed  CAS  Google Scholar 

  • Assaf S, Hadar Y, Dosoretz CG (1997) 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme Microb Technol 21:484–490

    CAS  Google Scholar 

  • Atmosukarto I, Castillo U, Hess W, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sci 169:854–861

    CAS  Google Scholar 

  • Bacon CW, White JW (eds) (2000) Microbial endophytes. Dekker, New York

    Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    PubMed  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    PubMed  CAS  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    PubMed  CAS  Google Scholar 

  • Bennett JW (1983) Differentiation and secondary metabolism in mycelial fungi. In: Bennett JW, Ciegler A (eds) Secondary metabolism and differentiation in fungi. Dekker, New York, pp 1–32

    Google Scholar 

  • Bennett JW, Bentley R (1989) What’s In a name? – microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    CAS  Google Scholar 

  • Bennett JW, Feibelman T (2001) Fungal bacterial interactions. In: Hock B (ed) The mycota, vol IX. Springer, Berlin, pp 229–240

    Google Scholar 

  • Bentley R, Maganathan R (1981) Geosmin and methylisoborneol biosynthesis in Streptomycetes. Evidence for an isoprenoid pathway and its absence in nondifferentiating isolates. FEBS Lett 125:220–222

    PubMed  CAS  Google Scholar 

  • Berg JM, Tymoch JL, Stryer L (2007) Biochemistry. Freeman, New York

    Google Scholar 

  • Berger RG, Drawert F, Tiefel P (1992) Naturally occurring flavours from fungi, yeasts, and bacteria. In: Patterson RLS, Charlwood BV, MacLeod G, Williams AA (eds) Bioinformation of flavours. Royal Chemistry Society, Cambridge, pp 1–20

    Google Scholar 

  • Bloch E, Deorazio R (1994) Chemistry in a salad bowl: comparative organosulfur chemistry of garlic, onion, and shitake mushrooms. Pure Appl Chem 66:2205–2206

    Google Scholar 

  • Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4:7032

    Google Scholar 

  • Borg-Karlson A-K, Englund F, Unelius CR (1994) Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry 35:321–323

    CAS  Google Scholar 

  • Börjesson T, Stöllman UM, Adamek P, Kaspersson A (1989) Analysis of volatile compounds for detection of molds in stored cereals. Cereal Chem 66:300–304

    Google Scholar 

  • Börjesson T, Stöllman UM, Schnürer J (1993) Off-odorous compounds produced by molds on oatmeal agar: identification and relation to other growth characteristics. J Agric Food Chem 41:2104–2111

    Google Scholar 

  • Breheret S, Talou T, Rapior S, Bessiere J-M (1997) Monoterpenes in the aromas of fresh wild mushrooms. J Agric Food Chem 45:831–836

    CAS  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus–seed pathosystem. Mol Microbiol 67:378–391

    PubMed  CAS  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    PubMed  CAS  Google Scholar 

  • Brown WL (1968) An hypothesis concerning the function of the metapleural glands in ants. Am Nat 102:188–191

    Google Scholar 

  • Bruce A, Verrall S, Hackett CA, Wheatley RE (2004) Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198

    CAS  Google Scholar 

  • Burge PS (2004) Studies on the role of fungi in sick building syndrome. Occup Environ Med 61:185–190

    PubMed  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    PubMed  CAS  Google Scholar 

  • Champe SP, el-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988

    PubMed  CAS  Google Scholar 

  • Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol 133:1383–1387

    PubMed  CAS  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs de champignons: chimie et rôle dans les interactions biotiques – une revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    PubMed  CAS  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75

    PubMed  CAS  Google Scholar 

  • Cho IH, Namgung H-J, Choi H-K, Kim YS (2008) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake sing). Food Chem 106:71–76

    CAS  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Claeson A-S, Levin J-O, Gr B, Sunesson A-L (2002) Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 4:667–672

    PubMed  CAS  Google Scholar 

  • Clough SJ, Schell MA, Denny TP (1994) Evidence for involvement of a volatile extracellular factor in Pseudomonas solonacearum virulence gene expression. MPMI 7:621–630

    Google Scholar 

  • Cole R, Schweikert M (2003) Handbook of secondary fungal metabolites, vol 1–3. Academic, Amsterdam

    Google Scholar 

  • Combet E, Henderson J, Eastwood DC, Burton KS (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326

    CAS  Google Scholar 

  • Cronin DA, Ward MK (1971) The characterisation of some mushroom volatiles. J Sci Food Agric 22:477–479

    CAS  Google Scholar 

  • de Pinho PG, Ribeiro B, Goncalves RF, Baptista P, Valentao P, Seabra RM, Andrade PB (2008) Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J Agric Food Chem 56:1704–1712

    PubMed  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost–benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Google Scholar 

  • Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005a) Volatiles releases by Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865

    PubMed  CAS  Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2005b) Biosynthesis of volatiles by the Myxobacterium Myxococcus xanthus. Chembiochem 5:778–787

    Google Scholar 

  • Dowd PF, Bartelt RJ (1991) Host-derived volatiles as attractants and pheromone synergists for dried fruit beetle, Carpophilus hemipterus. J Chem Ecol 17:285–308

    CAS  Google Scholar 

  • Dunkel M, Schmidt U, Struck S, Berger L, Gruening B, Hossbach J, Jaeger IS, Effmert U, Piechulla B, Eriksson R, Knudsen J, Preissner R (2009) SuperScent – a database of flavors and scents. Nucleic Acids Res 37(Database Issue):D291–D294

    PubMed  CAS  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    PubMed  CAS  Google Scholar 

  • Eisner T (2003) For love of insects. Harvard University Press, Cambridge

    Google Scholar 

  • Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl Environ Microbiol 68:2822–2828

    PubMed  CAS  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson A-K (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590

    Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    PubMed  CAS  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    CAS  Google Scholar 

  • Fiedler N, Laumbach R, Kelly-McNeil K, Lioy P, Fan Z-H, Zhang J, Ottenweller J, Ohman-Strickland P, Kipen H (2005) Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Perspect 113:1542–1548

    PubMed  CAS  Google Scholar 

  • Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:779–810

    Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997) Hierarchial autoinduction in Ralstonia solanacearum: control of actyl- homoserine lactone production by a novel autoregulatory system responsive to 30- hydroxypalmitic acid methyl ester. J Bacteriol 179:7089–7097

    PubMed  CAS  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The Mycota X: industial applications, vol X, 2nd edn, Industrial applications. Springer, Berlin Heidelberg New York, pp 249–264

    Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gallois A, Langlois D (1990) New results in the volatile odorous compounds of French cheeses. Lait 70:89–106

    CAS  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    PubMed  CAS  Google Scholar 

  • Griffith RT, Jayachandran K, Shetty KG, Whitstine W, Furton KG (2007) Differentiation of toxic molds via headspace SPME-GC/MS and canine detection. Sensors 7:1496–1508

    CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Herrero-Garcia E, Garzia A, Cordobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115:393–400

    PubMed  CAS  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619

    PubMed  CAS  Google Scholar 

  • Hooper AM, Pickett JA (2004) Semiochemistry. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry, vol 2. Dekker, New York, pp 1270–1277

    Google Scholar 

  • Horswill A, Stoodley P, Stewart P, Parsek M (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380

    PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    PubMed  CAS  Google Scholar 

  • Hutchinson SA (1973) Biological activities of volatile fungal metabolites. Annu Rev Phytopathol 11:223–246

    CAS  Google Scholar 

  • Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117:418–426

    PubMed  CAS  Google Scholar 

  • Inamdar AA, Moore JC, Cohen RI, Bennett JW (2011) A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia 173:13–20

    PubMed  Google Scholar 

  • IOM (2004) Damp indoor spaces and health. National Academies, Washington

    Google Scholar 

  • Jarvis BB, Miller JD (2005) Mycotoxins as harmful indoor air contaminants. Appl Microbiol Biotechnol 66:367–372

    PubMed  CAS  Google Scholar 

  • Jeleń HH (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    PubMed  Google Scholar 

  • Joblin Y, Moularat S, Anton R, Bousta F, Orial G, Robine E, Picon O, Bourouina T (2010) Detection of moulds by volatile organic compounds; application to heritage conservation. Int Biodeterior Biodegrad 64:210–217

    CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    PubMed  CAS  Google Scholar 

  • Kaminski E, LIbbey LM, Stawicki S, Wasowicz E (1972) Identification of the predominant volatile compounds produced by Aspergillus flavus. Appl Microbiol 24:721–726

    PubMed  CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    PubMed  CAS  Google Scholar 

  • Karahadian C, Josephson DB, Lindsay RC (1985) Contribution of Penicillium sp. to the flavour of Brie and Camembert cheese. J Dairy Sci 68:1865–1877

    CAS  Google Scholar 

  • Karlovsky P (ed) (2008) Secondary metabolites in soil ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Karlshøj K, Nielsen PV, Larsen TO (2007) Fungal volatiles biomarkers of good and bad food quality. In: Dijksterhuis J, Samson RA (eds) Food mycology. CRC, Boca Raton, pp 279–302

    Google Scholar 

  • Karlson P, Luscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183:55–56

    PubMed  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    PubMed  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37

    CAS  Google Scholar 

  • Kline D, Allan SA, Bernier UR, Welch CH (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Med Vet Entomol 21:323–331

    PubMed  CAS  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    PubMed  CAS  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    PubMed  CAS  Google Scholar 

  • Kües U, Navarro-González M (2009) Communication of fungi on individual, species, kingdom, and above kingdom levels. In: Anke T, Weber D (eds) The Mycota XV. Physiology and genetics. Springer, Berlin Heidelberg New York, pp 79–106

    Google Scholar 

  • Kuske M, Romain A-C, Nicolas J (2005) Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ 40:824–831

    Google Scholar 

  • La Camera S, Gouzerh G, Sandrine D, Laurent H, Bernard F, Michel F, Thierry H (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    PubMed  Google Scholar 

  • Lam K, Tsang M, Labrie A, Gries R, Gries G (2010) Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol 36:141–147

    PubMed  CAS  Google Scholar 

  • Larsen TO, Frisvad JC (1995) Comparison of different methods for collection of volatile chemical markers from fungi. J Microbiol Methods 24:135–144

    CAS  Google Scholar 

  • Lax AR, Templeton GE, Meyer WL (1985) Isolation, purification, and biological activity of a self-inhibotor from conidia of Colletotrichum gloeosporioides. Phytopathology 75:386–390

    CAS  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106:1213–1219

    PubMed  CAS  Google Scholar 

  • Leeder AC, Palma-Guerrero J, Glass NL (2011) The social network: deciphering fungal language. Nat Rev Microbiol 9:440–451

    PubMed  CAS  Google Scholar 

  • Li DW, Yang CS (2004) Fungal contamination as a major contributor to sick building syndrome. Adv Appl Microbiol 55:31–112

    PubMed  CAS  Google Scholar 

  • Liu W, Mu W, Zhu B, Liu F (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Luntz AJ (2003) Arthropod semiochemicals: mosquitoes, midges and sealice. Biochem Soc Trans 31:128–133

    PubMed  Google Scholar 

  • Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    CAS  Google Scholar 

  • Mattheis JP, Roberts RG (1992) Identification of geosmin as a volatile metabolite of Penicillium expansum. Appl Environ Microbiol 58:3170–3172

    PubMed  CAS  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 75:182–187

    PubMed  CAS  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2009) Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere 76:114–119

    PubMed  CAS  Google Scholar 

  • Mau J-L, Beelman RB, Ziegler GR (1992) Effect of 10-oxo-trans-8-decenoic acid on growth of Agaricus bisporus. Phytochemistry 31:4059–4064

    CAS  Google Scholar 

  • Mau J-L, Chyau C-C, Li J-Y, Tseng Y-H (1997) Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem 45:4726–4729

    CAS  Google Scholar 

  • Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    PubMed  CAS  Google Scholar 

  • McFee DR, Zavon P (1988) Solvents. In: Plog BA (ed) Fundamentals of industrial hygiene, 3rd edn. National Safety Council, Chicago, pp 95–121

    Google Scholar 

  • McNeal KS, Herbert BE (2009) Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci Soc Am J 73:579–588

    CAS  Google Scholar 

  • Meilgaard MC (1975a) Flavor chemistry of beer. I. Flavor interaction between principal volatiles. Tech Q Master Brewers Assoc Am 12:107–117

    CAS  Google Scholar 

  • Meilgaard MC (1975b) Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech Q Master Brewers Assoc Am 12:151–168

    CAS  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Tec 31:1–8

    Google Scholar 

  • Mercier J, Manker D (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot 24:355–362

    Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    PubMed  CAS  Google Scholar 

  • Mølhave L (2009) Volatile organic compounds and the sick building syndrome. In: Lippmann M (ed) Environmental toxicants: human exposures and their health effects, 3rd edn. Wiley-Interscience, New York, pp 241–256

    Google Scholar 

  • Morey P, Wortham A, Weber A, Horner E, Black M, Muller W (1997) Microbial VOCs in moisture damaged buildings. Health Build 1:245–250

    Google Scholar 

  • Mosandl A, Heusinger G, Gessner M (1986) Analytical and sensory differentiation of 1-octen-3-ol enantiomers. J Agric Food Chem 34:119–122

    CAS  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    PubMed  CAS  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    PubMed  CAS  Google Scholar 

  • Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    PubMed  CAS  Google Scholar 

  • Nilssen AC (1998) Effect of 1-octen-3-ol in field trapping Aedes spp. (Dipt., Culicidae) and Hybomitra spp. (Dipt., Tabanidae) in subartic Norway. J Appl Entomol 122:465–468

    CAS  Google Scholar 

  • Nilsson A, Kihlstrom E, Lagesson V, Wessen B, Szponar B, Larsson L, Tagesson C (2004) Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 14:74–82

    PubMed  CAS  Google Scholar 

  • Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Bennett JW, Zou C, Yang J, Zhang KQ (2010) A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci USA 107:16631–16636

    PubMed  CAS  Google Scholar 

  • Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101:583–591

    PubMed  CAS  Google Scholar 

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220

    Google Scholar 

  • Noverr MC, Erb-Downward JR (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533

    PubMed  CAS  Google Scholar 

  • Okull DO, Beelman RB, Gourama H (2003) Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J Food Prot 66:1503–1505

    PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    PubMed  CAS  Google Scholar 

  • Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612

    PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo H, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    PubMed  CAS  Google Scholar 

  • Palkova Z, Forstova J (2000) Yeast colonies synchronise their growth and development. J Cell Sci 113:1923–1928

    PubMed  CAS  Google Scholar 

  • Palkova Z, Janderova B, Gabriel J, Zikanova B, Pospisek M, Forstova J (1997) Ammonia mediates communication between yeast colonies. Nature 390:532–536

    PubMed  CAS  Google Scholar 

  • Palkova Z, Devaux F, Icicova M, Minarikova L, Le Crom S, Jacq C (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13:3901–3914

    PubMed  CAS  Google Scholar 

  • Pasanen P, Korpi A, Kalliokosi P, Pasanen AL (1997) Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int 23:425–432

    CAS  Google Scholar 

  • Pavlou AD, Turner AP (2000) Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med 38:99–112

    PubMed  CAS  Google Scholar 

  • Pelaez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Dekker, New York, pp 49–92

    Google Scholar 

  • Pierce AM, Pierce HD, Borden JH, Oehlschlager AC (1991a) Fungal volatiles: semiochemicals for stored-product beetles (Coleoptera: Cucujidae). J Chem Ecol 3:567–579

    Google Scholar 

  • Pierce AM, Pierce HD, Oehlschlager AC, Borden JH (1991b) 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus adevna (Waltl) (Coleoptera: Cucujidae). J Chem Ecol 3:567–579

    Google Scholar 

  • Poland TM, Pureswaran DS, Ciaramitaro TM, Borden JH (2009) 1-Octen-3-ol is repellent to Ips pini (Coleoptera: Curculionidae: Scolytinae) in the Midwestern United States. Can Entomol 141:158–160

    Google Scholar 

  • Ramoni R, VIncent F, Grolli S, Conti V, Malosse C, Boyer F, Nagnan-Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276:7150

    PubMed  CAS  Google Scholar 

  • Rapior S, Breheret S, Talou T, Pelissier Y, Bessiere JM (2002) The anise-like odor of Clitocybe odora, Lentinellus cochleatus, and Agaricus essettie. Mycologia 94:373–376

    PubMed  CAS  Google Scholar 

  • Robinson J (ed) (2006) The Oxford companion to wine, 3rd edn. Oxford, Oxford University Press

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    PubMed  CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    PubMed  CAS  Google Scholar 

  • Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2:1721–1731

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Paré PW, Kloepper JW (2005) Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol J 21:7–12

    Google Scholar 

  • Schnürer J, Olsson J, Börjesson T (1999) Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217

    PubMed  Google Scholar 

  • Schöller CEG, Gürtler H, Petersen R, Molin S, Wilkins K (2002) Volatile metabolites from Actinomycetes. J Agric Food Chem 50:2615–2621

    PubMed  Google Scholar 

  • Schreier P (1992) Bioflavours: an overview. In: Patterson RLS, Charlwood BV, MacLeod G, Williams AA (eds) Bioinformation of flavours. Royal Society of Chemistry, Cambridge, pp 1–20

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    PubMed  CAS  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    PubMed  CAS  Google Scholar 

  • Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53:525–549

    PubMed  CAS  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739

    PubMed  Google Scholar 

  • Sneeden EY, Harris HH, Pickering J, Prince RC, Johnson S, Li X, Block E, George GH (2004) The sulfur chemistry of shitake mushroom. J Am Chem Soc 126:458–459

    PubMed  CAS  Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007a) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598

    PubMed  CAS  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007b) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    PubMed  CAS  Google Scholar 

  • Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    CAS  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    PubMed  CAS  Google Scholar 

  • Straus DC (2009) Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health 25:617–635

    PubMed  CAS  Google Scholar 

  • Straus DC, Cooley JD, Wong WC, Jumper CA (2003) Studies on the role of fungi in sick building syndrome. Arch Environ Health 58:475–478

    PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiology 147:2943–2950

    PubMed  CAS  Google Scholar 

  • Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    PubMed  CAS  Google Scholar 

  • Strobel GA, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94

    PubMed  CAS  Google Scholar 

  • Ström G, West J, Wessen B, Palmgren U (1994) Health implications of fungi in indoor environments: quantitative analysis of microbial volatiles in damp Swedish houses. Air Qual Monogr 2:291–305

    Google Scholar 

  • Sunesson AL, Vaes WHJ, Nilsson CA, Blomquist G, Andersson B, Carlson R (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918

    PubMed  CAS  Google Scholar 

  • Sunesson AL, Nilsson CA, Andersson B, Blomquist G (1996) Volatile metabolites produced by two fungal species cultivated on building materials. Ann Occup Hyg 40:397–410

    PubMed  CAS  Google Scholar 

  • Takahashi N (1986) Chemistry of plant hormones. CRC, Boca Raton

    Google Scholar 

  • Tan RX, Zou WV (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:381–383

    PubMed  CAS  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    PubMed  CAS  Google Scholar 

  • Thorn J (2001) The inflammatory response in humans after inhalation of bacterial endotoxin: a review. Inflamm Res 50:254–261

    PubMed  CAS  Google Scholar 

  • Tirillini B, Verdelli G, Paolocci F, Ciccioli P, Frattoni M (2000) The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochemistry 55:983–985

    PubMed  CAS  Google Scholar 

  • Trinci APJ, Whittaker C (1968) Self-inhibition of spore germination in Aspergillus nidulans. Trans Br Mycol Soc 51:594–596

    Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    PubMed  CAS  Google Scholar 

  • Tsurushima T, Ueno T, Fukami H, Irie H, Inoue M (1995) Germination self-inhibitors from Colletotrichum gloeosporioides f.sp jussiaea. Mol Plant Microbe Interact 8:652–657

    CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic, London

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic, London

    Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi:10.1128/AEM.01078-07

    PubMed  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Google Scholar 

  • Walinder R, Ernstgard L, Johanson G, Venge P, Wieslander G (2005) Acute effects of a fungal volatile compound. Environ Health Perspect 113:1775–1778

    PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    PubMed  CAS  Google Scholar 

  • Watson SB, Brownlee B, Satchwill T, Hargesheimer EE (2000) Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Res 34:2818–2828

    CAS  Google Scholar 

  • Weeks EN, Birkett MA, Cameron MM, Pickett JA, Logan JG (2011) Semiochemicals of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), and their potential for use in monitoring and control. Pest Manag Sci 67:10–20

    PubMed  CAS  Google Scholar 

  • Wheatley R, Hackett C, Bruce A, Kundzewicz A (1997) Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39:199–205

    CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(Suppl 1):487–511

    PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard ANL, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    PubMed  CAS  Google Scholar 

  • Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770

    PubMed  CAS  Google Scholar 

  • WHO (2009) Guidelines for indoor air quality: dampness and mold. Druckpartner Moser, Germany

    Google Scholar 

  • Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446

    PubMed  CAS  Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9:5099–5148

    PubMed  CAS  Google Scholar 

  • Wilson AD, Baietto M (2011) Advances in electronic-nose technologies developed for biomedical applications. Sensors 11:1105–1176

    PubMed  CAS  Google Scholar 

  • Wood WF, Fesler M (1986) Mushroom odors: student synthesis of the odoriferous compounds of the matsutake mushroom. J Chem Educ 63:92

    CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta Lipids Lipid Metab 794:25–30

    CAS  Google Scholar 

  • Xie X, Zhang H, Pare P (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    PubMed  CAS  Google Scholar 

  • Zhang Z, Li G (2010) A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J 95:127–139

    CAS  Google Scholar 

  • Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agric For Entomol 6:1–19

    CAS  Google Scholar 

  • Zhang Y-Q, Wilkinson H, Keller NP, Tsitsigiannis D (2005) Secondary metabolite gene clusters. In: An Z (ed) Handbook of industrial microbiology. Dekker, New York, pp 355–386

    Google Scholar 

  • Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M, Ryu C-M, Allen R, Melo I, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    PubMed  CAS  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    PubMed  CAS  Google Scholar 

  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808

    PubMed  CAS  Google Scholar 

  • Zogorski JS, Carter JM, Ivahnenko T, Lapham WW, Moran MJ, Rowe BL, Squillace PJ, Toccalino PL (2006) The quality of our nation’s waters – volatile organic compounds in the nation’s ground water and drinking-water supply wells. US Geological Survey Circular 1292. US Geological Survey, Reston

    Google Scholar 

Download references

Acknowledgements

We thank Arati Inamdar, James Mauro, Prakash Masurekar, Shannon Morath, David Pu, and Alisa Schink for their intellectual insights on fungal VOCs; we thank Natalie Naranjo and Shannon Morath for their help with the references, Karl Esser for his mentorship, Berthold Hock for his editorial support, and the Rutgers University Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bennett, J.W., Hung, R., Lee, S., Padhi, S. (2012). 18 Fungal and Bacterial Volatile Organic Compounds: An Overview and Their Role as Ecological Signaling Agents. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30826-0_18

Download citation

Publish with us

Policies and ethics