15 The Symbiotic Phenotype of Lichen-Forming Ascomycetes and Their Endo- and Epibionts

  • R. Honegger
Part of the The Mycota book series (MYCOTA, volume 9)


This chapter summarizes the diversity of interactions in lichen symbiosis at the taxonomic, organismic and cellular levels. Peculiarities of lichen-dominated terrestrial ecosystems, their ecological roles and endangerment are discussed. Lichenicolous (parasitic) fungi, symptomless endophytic fungi and bacterial epibionts of lichen thalli and their potential biological roles are summarized. The focus is on the symbiotic phenotype of lichen-forming ascomycetes, i.e. the main types of thallus morphologies, the functional anatomy of macrolichens and their growth patterns, the fine structure and composition of cell wall types of lichen photobionts and their impact on the mycobiont–photobiont interface. Modes of vegetative symbiotic propagation are summarized.


Usnic Acid Fungal Partner Endolichenic Fungus Fruticose Lichen Lichenicolous Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



My sincere thanks are due to my colleagues David L. Hawksworth for helpful information on lichenicolous fungi, to Burkhard Büdel and Robert Lücking for providing specimens (Peltula and Psoroglaena spp.), to Reinhard Berndt for Fig. 15.1y, to my husband Thomas G. Honegger for patient help with all computer problems, to the editor, Prof. Bertold Hock for his encouragement, patience and help, to the project manager, Athiappan Kumar, for his valuable support, to the Directorium of the Institute of Plant Biology of the University of Zürich for providing access to the infrastructure beyond my retirement and to the Swiss National Science Foundation for generous financial support (grant 3100A0-116597).


  1. Adams GC, Kropp BR (1996) Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia 88:459–472CrossRefGoogle Scholar
  2. Ahmadjian V (1966) Artificial reestablishment of lichen Cladonia cristatella. Science 151:199–201PubMedCrossRefGoogle Scholar
  3. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160CrossRefGoogle Scholar
  4. Ahmadjian V (2001) Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 373–383Google Scholar
  5. Anglesea D, Veltkamp C, Greenhalgh GH (1982) The upper cortex of Parmelia saxatilis and other lichen thalli. Lichenologist 14:29–38CrossRefGoogle Scholar
  6. Antoine ME (2004) An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist 107:82–87CrossRefGoogle Scholar
  7. Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298PubMedCrossRefGoogle Scholar
  8. Armaleo D (1993) Why do lichens make secondary products? In: 15th International Botanical Congress, Yokohama. Abstracts, p 11Google Scholar
  9. Armaleo D, Zhang Y, Cheung S (2008) Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100:565–576PubMedCrossRefGoogle Scholar
  10. Armaleo D, Sun X, Culberson C (2011) Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754PubMedCrossRefGoogle Scholar
  11. Armstrong R (1994) Dispersal of soredia from individual soralia of the lichen Hypogymnia physodes (L.) Nyl. in a simple wind tunnel. Environ Exp Bot 34:39–45CrossRefGoogle Scholar
  12. Armstrong R (2004) Lichens, lichenometry and global warming. Microbiologist 2004:32–35.
  13. Armstrong RA, Bradwell T (2010a) Growth of crustose lichens: a review. Geogr Ann A 92:3–17CrossRefGoogle Scholar
  14. Armstrong RA, Bradwell T (2010b) The use of lichen growth rings in lichenometry: some preliminary findings. Geogr Ann A 92:141–147CrossRefGoogle Scholar
  15. Armstrong RA, Smith SN (1993) Radial growth and carbohydrate levels in the lichen Parmelia conspersa on north and south facing rock surfaces. Symbiosis 15:27–49Google Scholar
  16. Armstrong RA, Smith SN (1994) The levels of ribitol, arabitol and mannitol in individual lobes of the lichen Parmelia conspersa (Ehrh ex Ach.) Ach. Environ Exp Bot 34:253–260CrossRefGoogle Scholar
  17. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  18. Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W (eds) Tropical forest community ecology. Wiley-Blackwell, Oxford, pp 254–271Google Scholar
  19. Arnold AE, Miadlikowska J, Higgins KL et al (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297PubMedCrossRefGoogle Scholar
  20. Ascaso C, Gonzales C, Vicente C (1980) Epiphytic Evernia prunastri (L.) Ach.: ultrastructural facts. Cryptog Bryol Lichenol 1:45–51Google Scholar
  21. Asplund J, Solhaug KA, Gauslaa Y (2010) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91:3100–3105PubMedCrossRefGoogle Scholar
  22. Avalos A, Legaz M, Vicente C (1986) The occurrence of lichen phenolics in the xylem sap of Quercus pyrenaica, their translocation to leaves and biological significance. Biochem Syst Ecol 14:381–384CrossRefGoogle Scholar
  23. Bačkor M, Klemová K, Bačkorová M, Ivanova V (2010) Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont. J Chem Ecol 36:405–411PubMedCrossRefGoogle Scholar
  24. Baloch E, Lücking R, Lumbsch HT, Wedin M (2010) Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes). Taxon 59:1483–1494Google Scholar
  25. Bates JW, Bell JNB, Massara AC (2001) Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations. Atmos Environ 35:2557–2568CrossRefGoogle Scholar
  26. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314PubMedCrossRefGoogle Scholar
  27. Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720CrossRefGoogle Scholar
  28. Beierkuhnlein C, Drewello R, Snethlage R, Töpfer LH (2011) Zwischen Denkmalschutz und Naturschutz. Leitfaden zur naturverträglichen Instandhaltung von Mauerwerk in der Denkmalpflege. Initiativen zum Umweltschutz 83. Erich Schmidt/Deutsche Bundsstiftung Umwelt, BerlinGoogle Scholar
  29. Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management, 2nd edn. Springer, Berlin Heidelberg New York, pp 1–503Google Scholar
  30. Belnap J, Rosentreter R, Leonard S, Kaltenecker JH, Williams J, Eldridge D (eds) (2001) Biological soil crusts: ecology and management. Technical reference 1730-2. US Department of the Interior, Bureau of Land Management, US Geological Survey, Denver, pp 1–118.
  31. Biazrov LG (1994) The radionuclides in lichen thalli in Chernobyl and East Urals areas after nuclear accidents. Phyton 34:85–94Google Scholar
  32. Bjelland T, Thorset IH (2002) Comparative studies of the lichen–rock interface of four lichens in Vingen, western Norway. Chem Geol 192:81–98CrossRefGoogle Scholar
  33. Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685PubMedCrossRefGoogle Scholar
  34. Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344PubMedCrossRefGoogle Scholar
  35. Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota). Biol J Linn Soc 88:283–293CrossRefGoogle Scholar
  36. Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6:e18770PubMedCrossRefGoogle Scholar
  37. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  38. Bonfante P, Balestrini R, Genre A, Lanfranco L (2009) Establishment and functioning of arbuscular mycorrhizas. In: Deising HB (ed) The Mycota V, part 2 (plant relationships). Springer, Berlin Heidelberg New York, pp 259–274Google Scholar
  39. Bonnier G (1889) Recherches sur la synthèse des lichens. Ann Sci Nat (Ser 7) 9:1–34Google Scholar
  40. Bourgeois G, Suire C, Vivas N, Benoist F, Vitry C (1999) Atraric acid, a marker for epiphytic lichens in the wood used in cooperage: identification and quantification by GC/MS/(MS). Analusis 27:281–283CrossRefGoogle Scholar
  41. Brierley WB (1913) The structure and life history of Leptosphaeria lemaneae (Cohn). Mem Manch Lit Philos Soc 57:1–21Google Scholar
  42. Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New HavenGoogle Scholar
  43. Brunner U, Honegger R (1985) Chemical and ultrastructural studies on the distribution of sporopollenin-like biopolymers in 6 genera of lichen phycobionts. Can J Bot 63:2221–2230CrossRefGoogle Scholar
  44. Bubrick P, Galun M (1980) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls: correlation between binding patterns and cell wall cytochemistry. Protoplasma 104:167–173CrossRefGoogle Scholar
  45. Bubrick P, Galun M, Frensdorff A (1984) Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) Th.Fr. can be found free-living in nature. New Phytol 97:455–462CrossRefGoogle Scholar
  46. Büdel B (1987) Zur Biologie und Systematik der Flechtengattungen Heppia und Peltula im südlichen Afrika. Bibl Lichenol 23:1–105Google Scholar
  47. Büdel B (2002) Diversity and ecology of biological soil crusts. Prog Bot 63:386–404CrossRefGoogle Scholar
  48. Büdel B, Henssen A (1988) Trebouxia aggregata und Gloeocapsa sanguinea, Phycobionten in Euopsis granatina (Lichinaceae). Plant Syst Evol 158:235–241CrossRefGoogle Scholar
  49. Büdel B, Lange OL (2001) Synopsis: comparative biogeography and ecology of soil–crust biota and communities. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 141–152Google Scholar
  50. Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172CrossRefGoogle Scholar
  51. Büdel B, Darienko T, Deutschewitz K et al (2009) South African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247PubMedCrossRefGoogle Scholar
  52. Buffoni Hall RS, Bornman JF, Björn LO (2002) UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J Photochem Photobiol B 66:13–20PubMedCrossRefGoogle Scholar
  53. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495PubMedCrossRefGoogle Scholar
  54. Cardinale M, Castro JVD, Müller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71PubMedCrossRefGoogle Scholar
  55. Casano LM, del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818PubMedCrossRefGoogle Scholar
  56. Chapman R, Waters D (2004) Lichenization of the Trentepohliales. Complex algae and odd relationships. In: Seckbach J (ed) Symbiosis. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 359–371Google Scholar
  57. Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39:121–146CrossRefGoogle Scholar
  58. Chen J, Zhang MY, Wang L, Shimazaki H, Tamura M (2005) A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sens Environ 96:165–175CrossRefGoogle Scholar
  59. St Clair LL, Seaward MRD (eds) (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. St Clair LL, Webb BL, Johansen JR, Nebeker GT (1984) Cryptogamic soil crusts: enhancement of seedling establishment in disturbed and undisturbed areas. Reclam Reveg Res 3:129–136Google Scholar
  61. Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146PubMedCrossRefGoogle Scholar
  62. Cornejo C, Chabanenko S, Scheidegger C (2009) Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetidae, Ascomycota). Lichenologist 41:275–284CrossRefGoogle Scholar
  63. Coxson DS, Stevenson SK (2007) Growth rate responses of Lobaria pulmonaria to canopy structure in even-aged and old-growth cedar–hemlock forests of central-interior British Columbia, Canada. For Ecol Manage 242:5–16CrossRefGoogle Scholar
  64. Crespo A, Lumbsch HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1:167–170PubMedCrossRefGoogle Scholar
  65. Crespo A, Pérez-Ortega S (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. An Jardín Bot Madrid 66:71–81CrossRefGoogle Scholar
  66. Crespo A, Lumbsch HT, Mattsson JE et al (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol 44:812–824PubMedCrossRefGoogle Scholar
  67. Crespo A, Kauff F, Divakar PK et al (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59:1735–1753Google Scholar
  68. Dahlkild A, Kallersjo M, Lohtander K, Tehler A (2001) Photobiont diversity in the Physciaceae (Lecanorales). Bryologist 104:527–536CrossRefGoogle Scholar
  69. De los Rios A, Grube M (2000) Host–parasite interfaces of some lichenicolous fungi in the Dacampiaceae (Dothideales, Ascomycota). Mycol Res 104:1348–1353CrossRefGoogle Scholar
  70. De los Rios A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–189Google Scholar
  71. Deckert RJ, Garbary DJ (2005) Ascophyllum and its symbionts. VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20:225–232CrossRefGoogle Scholar
  72. Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182Google Scholar
  73. Drewello R, Drewello UG (2009) Flechten auf Denkmälern: Indikatoren und Vermittler zwischen Denkmal- und Naturschutz. In: Bayerische Akademie der Wissenschaften (ed) Ökologische Rolle der Flechten. Rundgespräche der Kommission für Ökologie 36. Verlag Dr. Friederich Pfeil, München, pp 161–180Google Scholar
  74. Eichenberger C (2007) Molecular phylogenies of representatives of Xanthoria and Xanthomendoza (lichen-forming Ascomycetes) Inauguraldissertation. Mathematisch Naturwissenschaftliche Fakultät der Universität Zürich, Zürich, pp 1–143Google Scholar
  75. Ekman S, Tønsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol Res 106:1262–1276CrossRefGoogle Scholar
  76. Ellis CJ, Coppins BJ (2007) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39:377–391CrossRefGoogle Scholar
  77. Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235CrossRefGoogle Scholar
  78. Elo H, Matikainen J, Pelttar E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468PubMedCrossRefGoogle Scholar
  79. Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi- and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059CrossRefGoogle Scholar
  80. Englund B (1977) The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiol Plant 41:298–304CrossRefGoogle Scholar
  81. Espoz C, Guzmáan G, Castilla JC (1995) The lichen Thelidium litorale on shells of intertidal limpets: a case of lichen-mediated cryptic mimicry. Mar Ecol Prog Ser 119:191–197CrossRefGoogle Scholar
  82. Ettl H, Gärtner G (1995) Syllabus der Boden-Luft- und Flechtenalgen. Fischer, StuttgartGoogle Scholar
  83. Evans RD, Lange OL (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin Heidelberg New York, pp 263–279Google Scholar
  84. Farrar JF (1988) Physiological buffering. In: Galun M (ed) Handbook of Lichenology, vol 2. CRC, Boca Raton, pp 101–105Google Scholar
  85. Favero-Longo SE, Turci F, Tomatis M et al (2005) Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. J Environ Monit 7:764–766PubMedCrossRefGoogle Scholar
  86. Favero-Longo SE, Girlanda M, Honegger R, Fubini B, Piervittori R (2007) Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres. Mycol Res 111:473–481PubMedCrossRefGoogle Scholar
  87. Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230CrossRefGoogle Scholar
  88. Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses – silent chronists of the Chernobyl accident. Bibl Lichenol 38:63–77Google Scholar
  89. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  90. Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191CrossRefGoogle Scholar
  91. Friedl T (1995) Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18 s ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). J Phycol 31:632–639CrossRefGoogle Scholar
  92. Friedl T, Büdel B (2008) Photobionts. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 9–26CrossRefGoogle Scholar
  93. Fröberg L, Berg CO, Baur A, Baur B (2001) Viability of lichen photobionts after passing through the digestive tract of a land snail. Lichenologist 33:543–545CrossRefGoogle Scholar
  94. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  95. Garbary DJ, London JF (1995) The Ascophyllum/Polysiphonial/Mycosphaerella symbiosis V. Fungal infection protects A. nosodum from desiccation. Bot Mar 38:529–533Google Scholar
  96. Garbary DJ, Macdonald KA (1995) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis 4. Mutualism in the Ascophyllum/Mycosphaerella interaction. Bot Mar 38:221–225Google Scholar
  97. Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105PubMedCrossRefGoogle Scholar
  98. Gaya E, Navarro-Rosinés P, Llimona X, Hladun N, Lutzoni F (2008) Phylogenetic reassessment of the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycol Res 112:528–546PubMedCrossRefGoogle Scholar
  99. Geiser DM, Gueidan C, Miadlikowska J et al (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064PubMedCrossRefGoogle Scholar
  100. Geml J, Kauff F, Brochmann C, Taylor DL (2010) Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). J Biogeogr 37:1529–1542Google Scholar
  101. Girlanda M, Isocrono D, Bianco C, Luppi-Mosca AM (1997) Two foliose lichens as microfungal ecological niches. Mycologia 89:531–536CrossRefGoogle Scholar
  102. Goebel K (1926a) Die Wasseraufnahme der Flechten. Ber Deutsch Bot Ges 44:158–161Google Scholar
  103. Goebel K (1926b) Morphologische und biologische studien. Ein Beitrag zur Biologie der Flechten. Ann Jard Bot Buitenzorg 36:1–83Google Scholar
  104. Goffinet B, Bayer RJ (1997) Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genet Biol 21:228–237PubMedCrossRefGoogle Scholar
  105. Golledge N, Everest J, Bradwell T, Johnson J (2010) Lichenometry on Adelaide Island, Antarctic Peninsula: size-frequency studies, growth rates and snowpatches. Geogr Ann A 92:111–124CrossRefGoogle Scholar
  106. Gougeon RD, Lucio M, Frommberger M et al (2009) The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc Natl Acad Sci USA 106:9174–9179PubMedCrossRefGoogle Scholar
  107. Grangeon S, Guédron S, Asta J, Sarret G, Charlet L (2012) Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecol Indic 13:178–183CrossRefGoogle Scholar
  108. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85CrossRefGoogle Scholar
  109. Grube M, De los Rios A (2001) Observations on Biatoropsis usnearum, a lichenicolous heterobasidiomycete, and other gall-forming fungi, using different microscopical techniques. Mycol Res 105:1116–1122CrossRefGoogle Scholar
  110. Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132PubMedCrossRefGoogle Scholar
  111. Grube M, Kantvilas G (2006) Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist 38:241–249CrossRefGoogle Scholar
  112. Grube M, Muggia L (2010) Identifying algal symbionts in lichen symbioses. In: Nimis PL, Vignes Lebbe R (eds) Tools for identifying biodiversity: progress and problems. Proceedings of the international congress, Paris, September 20–22, 2010. EUT Edizioni Università di Trieste, Trieste
  113. Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:105–115CrossRefGoogle Scholar
  114. Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168PubMedCrossRefGoogle Scholar
  115. Gueidan C, Ruibal Villaseñor C, de Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol 61:111–119PubMedCrossRefGoogle Scholar
  116. Gueidan C, Savic S, Thüs H et al (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58:184–208Google Scholar
  117. Guzow-Krzeminska B (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38:469–476CrossRefGoogle Scholar
  118. Haas JR, Purvis OW (2006) Lichen biogeochemistry. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 343–376Google Scholar
  119. Hager A, Brunauer G, Türk R, Stocker-Wörgötter E (2009) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J Chem Ecol 34:113–120CrossRefGoogle Scholar
  120. Hauck M, Huneck S (2007a) Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol 33:219–223PubMedCrossRefGoogle Scholar
  121. Hauck M, Huneck S (2007b) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides. Lichenologist 39:301–304CrossRefGoogle Scholar
  122. Hauck M, Jürgens SR, Brinkmann M, Herminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Ann Bot 101:531–539PubMedCrossRefGoogle Scholar
  123. Hauck M, Jürgens SR, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22PubMedCrossRefGoogle Scholar
  124. Hauck M, Otto PI, Dittrich S et al (2011) Small increase in sub-stratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann Bot 108:59–366Google Scholar
  125. Hawksworth DL (1988a) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20CrossRefGoogle Scholar
  126. Hawksworth DL (1988b) Effects of algae and lichen-forming fungi on tropical crops. In: Agnihotri VP, Sarbhoy KA, Kumar D (eds) Perspectives of mycopathology. Malhorta, New Delhi, pp 76–83Google Scholar
  127. Hawksworth DL (2000) Freshwater and marine lichen-forming fungi In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity Press, Hong Kong, pp 1–7Google Scholar
  128. Hawksworth DL, Honegger R (1994) The lichen thallus: symbiotic phenotype and its responses to gall producers. In: Williams MC (ed) Plant galls: organisms, interactions. Clarendon, Oxford, pp 77–98Google Scholar
  129. Hedenås H, Blomberg P, Ericson L (2007) Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts. Biol Conserv 135:380–387CrossRefGoogle Scholar
  130. Helms G (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Inauguraldissertation am Albrecht-von-Haller Institut für Pflanzenwissenschaften, Experimentelle Phykologie und Sammlung von Algenkulturen der Georg-August-Universität Göttingen, Göttingen, pp 1–156Google Scholar
  131. Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86CrossRefGoogle Scholar
  132. Henssen A (1995) Psoroglaena costaricensis, a new lichen species from Costa Rica, and remarks on other taxa of the genus Psoroglaena (Verrucariaceae). Bibl Lichenol 57:199–210Google Scholar
  133. Hestmark G (1992) Sex, size competition and escape – strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes). Oecologia 92:305–312CrossRefGoogle Scholar
  134. Hestmark G, Schroeter B, Kappen L (1997) Intrathalline and size-dependent patterns of activity in Lasallia pustulata and their possible consequences for competitive interactions. Funct Ecol 11:318–322CrossRefGoogle Scholar
  135. Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  136. Hill DJ (1976) The physiology of lichen symbiosis. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 457–496Google Scholar
  137. Hill DJ (1985) Changes in photobiont dimensions and numbers during co-development of lichen symbionts. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, New York, pp 303–317CrossRefGoogle Scholar
  138. Hill DJ (1989) The control of the cell cycle in microbial symbionts. New Phytol 112:175–184CrossRefGoogle Scholar
  139. Hill DJ (1992) An overlooked symbiosis. Photosynth Res 34:339–340CrossRefGoogle Scholar
  140. Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338CrossRefGoogle Scholar
  141. Hill DR, Peat A, Potts M (1994) Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182:126–148CrossRefGoogle Scholar
  142. Hodkinson BP (2011) A phylogenetic, ecological, and functional characterization of non-photoautotrophic bacteria in the lichen microbiome. PhD thesis, Duke University, DurhamGoogle Scholar
  143. Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180CrossRefGoogle Scholar
  144. Hodkinson BP, Lutzoni FM, Loveless TM, Bishop E (2006) Non-photosynthetic bacteria and the lichen symbiosis. In: Bright M, Horn M, Zook D, Lücker S, Kolar I (eds) Fifth international symbiosis society congress: program, abstracts, participants. Promare, Gdynia, p 95Google Scholar
  145. Hoffman Y, Aflalo C, Zarka A, Gutman J, James TY, Boussiba S (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol Res 112:70–81PubMedCrossRefGoogle Scholar
  146. Hoffmann N, Hafellner J (2000) Eine Revision der lichenicolen Arten der Sammelgattungen Guignardia und Physalospora (Ascomycotina). Bibl Lichenol 77:1–181Google Scholar
  147. Honegger R (1982) Cytological aspects of the triple symbiosis in Peltigera aphthosa. J Hattori Bot Lab 52:379–391Google Scholar
  148. Honegger R (1984) Cytological aspects of the mycobiont–phycobiont relationship in lichens. Haustorial types, phycobiont cell wall types, and the ultrastructure of the cell wall surface layers in some cultured and symbiotic myco- and phycobionts. Lichenologist 16:111–127CrossRefGoogle Scholar
  149. Honegger R (1986a) Ultrastructural studies in lichens. I. Haustorial types and their frequencies in a range of lichens with trebouxioid phycobionts. New Phytol 103:785–795CrossRefGoogle Scholar
  150. Honegger R (1986b) Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol 103:797–808CrossRefGoogle Scholar
  151. Honegger R (1987) Questions about pattern formation in the algal layer of lichens with stratified (heteromerous) thalli. Bibl Lichenol 25:59–72Google Scholar
  152. Honegger R (1990) Mycobiont-photobiont interactions in adult thalli and in axenically resynthesized prethallus stages of Xanthoria parietina (Teloschistales, lichenized Ascomycetes). Bibl Lichenol 38:191–208Google Scholar
  153. Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578CrossRefGoogle Scholar
  154. Honegger R (1992) Lichens: mycobiont–photobiont relationships. In: Reisser W (ed) Algae and symbiosis. Biopress, Bristol, pp 225–275Google Scholar
  155. Honegger R (1993) Developmental biology of lichens. New Phytol 125:659–677CrossRefGoogle Scholar
  156. Honegger R (1995) Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spacial problems at the cellular level. Can J Bot 73:569–578CrossRefGoogle Scholar
  157. Honegger R (1996) Experimental studies on growth and regenerative capacity in the foliose lichen Xanthoria parietina. New Phytol 133:573–581CrossRefGoogle Scholar
  158. Honegger R (1997) Metabolic interactions at the mycobiont–photobiont interface in lichens. In: Carroll GC, Tudzynski P (eds) The Mycota V. Plant relationships. Springer, Berlin Heidelberg New York, pp 209–221Google Scholar
  159. Honegger R (1998) The lichen symbiosis – what is so spectacular about it? Lichenologist 30:193–212Google Scholar
  160. Honegger R (2001) The symbiotic phenotype of lichen-forming ascomycetes. In: Hock B (ed) The Mycota IX (Fungal associations). Springer, Berlin Heidelberg New York, pp 165–188Google Scholar
  161. Honegger R (2007) Water relations in lichens. In: Gadd GM, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185–200Google Scholar
  162. Honegger R (2009) Lichen-forming fungi and their photobionts. In: Deising HB (ed) The Mycota V (Plant relationships), 2nd edn. Springer, Berlin Heidelberg New York, pp 305–333Google Scholar
  163. Honegger R, Brunner U (1981) Sporopollenin in the cell wall of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructural and chemical investigation. Can J Bot 59:2713–2734CrossRefGoogle Scholar
  164. Honegger R, Haisch A (2001) Immunocytochemical location of the (1 → 3) (1 → 4)-beta-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (Icelandic moss). New Phytol 150:739–746CrossRefGoogle Scholar
  165. Honegger R, Hugelshofer G (2000) Water relations in the Peltigera aphthosa group visualized with LTSEM techniques. Bibl Lichenol 75:113–126Google Scholar
  166. Honegger R, Peter M (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in light and electron microscopy. Symbiosis 16:167–186Google Scholar
  167. Honegger R, Conconi S, Kutasi V (1996a) Field studies on growth and regenerative capacity in the foliose macrolichen Xanthoria parietina (Teloschistales, Ascomycotina). Bot Acta 109:187–193Google Scholar
  168. Honegger R, Peter M, Scherrer S (1996b) Drought-stress induced structural alterations at the mycobiont photobiont interface in a range of foliose macrolichens. Protoplasma 190:221–232CrossRefGoogle Scholar
  169. Honegger R, Edwards D, Axe L (2012) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist, in pressGoogle Scholar
  170. Huneck S (2001) New results on the chemistry of lichen substances. Fort Chem Org Nat 81:1–276Google Scholar
  171. Huneck S (2003) Die wasserabweisende Eigenschaft von Flechtenstoffen. Bibl Lichenol 86:9–12Google Scholar
  172. Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  173. Huneck S, Lumbsch HT, Porzel A, Schmidt J (2004) Die Verteilung von Flechteninhaltsstoffen in Lecanora muralis und Lecidea inops und die Abhängigkeit der Usninsäure-Konzentration vom Substrat und von den Jahreszeiten bei Lecanora muralis. Bibl Lichenol 88:211–222Google Scholar
  174. Hyvärinen M, Hardling R, Tuomi J (2002) Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98:498–504CrossRefGoogle Scholar
  175. Ingólfsdóttir K (2002) Usnic acid. Phytochemistry 61:729–736PubMedCrossRefGoogle Scholar
  176. Innes JL (1988) The use of lichens in dating. In: Galun M (ed) CRC handbook of lichenology, vol 3. CRC, Boca Raton, pp 75–91Google Scholar
  177. Jaag O, Thomas E (1934) Neue Untersuchungen über die Flechte Epigloea bactrospora Zukal. Ber Schweiz Bot Ges 34:77–89Google Scholar
  178. Jahns HM, Ott S (1997) Life strategies in lichens – some general considerations. Bibl Lichenol 67:49–67Google Scholar
  179. James PW, Henssen A (1976) The morphological and taxonomic significance of cephalodia. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 27–77Google Scholar
  180. Joneson S, Lutzoni F (2009) Revisiting compatibility and thigmotropism in the lichen symbiosis. Symbiosis 47:109–115CrossRefGoogle Scholar
  181. Joneson S, Armaleo D, Lutzoni F (2011) Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 103:291–306PubMedCrossRefGoogle Scholar
  182. Jørgensen PM, Jahns HM (1987) Muhria, a remarkable new lichen genus from Scandinavia. Notes RBG Edinb 44:581–599Google Scholar
  183. Joubert JJ, Rijkenberg FHJ (1971) Parasitic green algae. Annu Rev Phytopathol 9:45–64CrossRefGoogle Scholar
  184. Kadouri A, Derenne S, Largeau C, Casadevall E, Berkaloff C (1988) Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry 27:551–557CrossRefGoogle Scholar
  185. Kagami M, Ad B, Ibelings BW, Donk EV (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129CrossRefGoogle Scholar
  186. Kannangara BTSDP, Rajapaksha RSCG, Paranagama PA (2009) Nature and bioactivities of endolichenic fungi in Pseudocyphellaria sp., Parmotrema sp. and Usnea sp. at Hakgala montane forest in Sri Lanka. Lett Appl Microbiol 48:203–209PubMedCrossRefGoogle Scholar
  187. Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) CRC handbook of lichenology, vol 2. CRC, Boca Raton, pp 37–100Google Scholar
  188. Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324CrossRefGoogle Scholar
  189. Karnieli A, Kokaly R, West NE, Clark RN (2001) Remote sensing of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 431–455Google Scholar
  190. Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156PubMedCrossRefGoogle Scholar
  191. Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, CambridgeGoogle Scholar
  192. Kershaw M, Thornton C, Wakley G, Talbot N (2005) Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Mol Microbiol 56:117–125PubMedCrossRefGoogle Scholar
  193. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI Europe, OxfordGoogle Scholar
  194. Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Commentaries on cyanobacterial symbioses. Biol Environ 10B:11–14Google Scholar
  195. Knowles RD, Pastor J, Biesboer DD (2006) Increased soil nitrogen associated with dinitrogen-fixing, terricolous lichens of the genus Peltigera in northern Minnesota. Oikos 114:37–48CrossRefGoogle Scholar
  196. Kodner RB, Summons RE, Knoll AH (2009) Phylogenetic investigation of the aliphatic, non-hydrolyzable biopolymer algaenan, with a focus on green algae. Org Geochem 40:854–862CrossRefGoogle Scholar
  197. Kogel KH, Franken P, Hückelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363PubMedCrossRefGoogle Scholar
  198. Kohlmeyer J, Kohlmeyer E (1972) Is Ascophyllum nodosum lichenized? Bot Mar 15:109–112CrossRefGoogle Scholar
  199. Kohlmeyer J, Volkmann-Kohlmeyer B (1998) Mycophycias, a new genus for the mycobionts of Apophlaea, Ascophyllum and Pelvetia. Syst Ascomyc 16:1–7Google Scholar
  200. Kohlmeyer J, Hawksworth DL, Volkmann-Kohlmeyer B (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. Mycol Prog 3:51–56CrossRefGoogle Scholar
  201. Kristmundsdóttir T, Jónsdóttir E, Ogmundsdóttir HM, Ingólfsdóttir K (2005) Solubilization of poorly soluble lichen metabolites for biological testing on cell lines. Eur J Pharm Sci 24:539–543PubMedCrossRefGoogle Scholar
  202. Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660CrossRefGoogle Scholar
  203. Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53CrossRefGoogle Scholar
  204. LaGreca S, Stutzman BW (2006) Distribution and ecology of Lecanora conizaeoides (Lecanoraceae) in eastern Massachusetts. Bryologist 109:335–347CrossRefGoogle Scholar
  205. Lange O (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 217–240Google Scholar
  206. Lange O, Kilian E, Ziegler H (1986) Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110CrossRefGoogle Scholar
  207. Lange O, Meyer A, Zellner H, Ullmann I, Wessels D (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib desert. Madoqua 17:17–30Google Scholar
  208. Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189Google Scholar
  209. Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202CrossRefGoogle Scholar
  210. Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280CrossRefGoogle Scholar
  211. Larson DW (1983) The pattern of production within individual Umbilicaria lichen thalli. New Phytol 94:409–419CrossRefGoogle Scholar
  212. Larson DW (1984) Habitat overlap/niche segregation in two Umbilicaria lichens: a possible mechanism. Oecologia 62:118–125CrossRefGoogle Scholar
  213. Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122CrossRefGoogle Scholar
  214. Lawrey JD, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80–120CrossRefGoogle Scholar
  215. Lawrey JD, Diederich P (2010) Lichenicolous fungi–worldwide checklist, including isolated cultures and sequences available. URL:
  216. Lawrey JD, Torzilli AP, Chandhoke V (1999) Destruction of lichen chemical defenses by a fungal pathogen. Am J Bot 86:184–189PubMedCrossRefGoogle Scholar
  217. Lawrey JD, Binder M, Diederich P, Molina MC, Sikaroodi M, Ertz D (2007) Phylogenetic diversity of lichen-associated homobasidiomycetes. Mol Phylogenet Evol 44:778–789PubMedCrossRefGoogle Scholar
  218. Lehr H, Galun M, Ott S, Jahns H-M, Fleminger G (2000) Cephalodia of the lichen Peltigera aphthosa (L.) Willd. specific recognition of the compatible photobiont. Symbiosis 29:357–365Google Scholar
  219. Letsch MR, Muller-Parker G, Friedl T, Lewis LA (2009) Elliptochloris marina sp. nov. (Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria). J Phycol 45:1127–1135CrossRefGoogle Scholar
  220. Li W-C, Zhou J, Guo S-Y, Guo L (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, china. Fungal Div 25:69–80Google Scholar
  221. Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci 14:356–363CrossRefGoogle Scholar
  222. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896PubMedCrossRefGoogle Scholar
  223. Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13 C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447–482CrossRefGoogle Scholar
  224. Loso MG, Doak DF (2006) The biology behind lichenometric dating curves. Oecologia 147:223–229PubMedCrossRefGoogle Scholar
  225. Lücking R (2008) Foliicolous lichenized fungi. New York Botanical Garden, New YorkGoogle Scholar
  226. Lücking R, Caceres M (2002) Foliicolous lichens of the world. Cited 1 June 2011
  227. Lücking R, Matzer M (2001) High foliicolous lichen alpha-diversity on individual leaves in Costa Rica and Amazonian Ecuador. Biodivers Conserv 10:2139–2152CrossRefGoogle Scholar
  228. Lücking R, Lawrey JD, Sikaroodi M et al (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418PubMedCrossRefGoogle Scholar
  229. Lud D, Huiskes AHL, Ott S (2001) Morphological evidence for the symbiotic character of Turgidosculum complicatulum Kohlm. & Kohlm. (= Mastodia tessellata Hook.f. & Harvey). Symbiosis 31:141–151Google Scholar
  230. Lumbsch HT, Huhndorf SM (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol Res 111:1064–1074PubMedCrossRefGoogle Scholar
  231. Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72CrossRefGoogle Scholar
  232. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940PubMedCrossRefGoogle Scholar
  233. Lutzoni F, Kauff F, Cox C et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480PubMedCrossRefGoogle Scholar
  234. MacGinitie H (1937) The flora of the Weaverville beds of Trinity County, California, with descriptions of the plant-bearing beds. In: Eocene flora of western America. Publication 465. Carnegie Institution of Washington, Washington, pp 83–151Google Scholar
  235. Maestre FT, Bowker MA, Escolar C et al (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Phil Trans R Soc B 365:2057–2070PubMedCrossRefGoogle Scholar
  236. Mägdefrau K (1957) Flechten und moose im baltischen Bernstein. Ber Dtsch Bot Ges 9:433–435Google Scholar
  237. Marsh JE, Timoney KP (2005) How long must Northern saxicolous lichens be immersed to form a waterbody trimline? Wetlands 25:495–499CrossRefGoogle Scholar
  238. Marshall WA (1996) Aerial dispersal of lichen soredia in the maritime Antarctic. New Phytol 134:523–530CrossRefGoogle Scholar
  239. Martin F, Tunlid A (2009) The ectomycorrhizal symbiosis: a marriage of convenience. In: Deising HB (ed) The Mycota, vol 5, 2nd edn, Plant relationships. Springer, Berlin Heidelberg New York, pp 237–257, part 2Google Scholar
  240. Matthews SW, Tucker SC, Chapman RL (1989) Ultrastructural features of mycobionts and trentepohliaceous phycobionts in selected subtropical crustose lichens. Bot Gaz 150:417–438CrossRefGoogle Scholar
  241. McCarthy DP (2007) Lichenometry. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, New York, pp 1399–1405CrossRefGoogle Scholar
  242. McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Monogr N Am Lichenol 1:1–105Google Scholar
  243. McDonald T, Dietrich F, Lutzoni F (2012) Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol 29:51–60PubMedCrossRefGoogle Scholar
  244. McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol Prog 5:221–229CrossRefGoogle Scholar
  245. Meeks JC, Elhai J, Thiel T et al (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106PubMedCrossRefGoogle Scholar
  246. Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95PubMedCrossRefGoogle Scholar
  247. Meier JL, Chapman RL (1983) Ultrastructure of the lichen Coenogonium interplexum Nyl. Am J Bot 70:400–407CrossRefGoogle Scholar
  248. Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc 76:259–268CrossRefGoogle Scholar
  249. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedCrossRefGoogle Scholar
  250. Miadlikowska J, Lutzoni F (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci 161:925–958CrossRefGoogle Scholar
  251. Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot 91:449–464PubMedCrossRefGoogle Scholar
  252. Miadlikowska J, Arnold A, Lutzoni F (2004) Diversity of cryptic fungi inhabiting healthy lichen thalli in a temperate and tropical forest. Ecol Soc Am Annu Meet 89:349–350Google Scholar
  253. Miadlikowska J, Kauff F, Hofstetter V et al (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103PubMedCrossRefGoogle Scholar
  254. Miao V, Coeffet-LeGal M-F, Brown D, Sinnemann S, Donaldson G, Davies J (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355PubMedCrossRefGoogle Scholar
  255. Millbank JW, Kershaw KA (1970) Nitrogen metabolism in lichens. III. Nitrogen fixation by internal cephalodia in Lobaria pulmonaria. New Phytol 69:595–597CrossRefGoogle Scholar
  256. Molina MC, Vicente C (1994) The distribution and mobility of the phycobiont in the thalli and apothecia of Usnea aurantiaco-atra Jacq. Phyton Arg 56:81–89Google Scholar
  257. Molina MC, DePriest PT, Lawrey JD (2005) Genetic variation in the widespread lichenicolous fungus Marchandiomyces corallinus. Mycologia 97:454–463PubMedCrossRefGoogle Scholar
  258. Mollenhauer D (1992) Geosiphon pyriforme. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 339–351Google Scholar
  259. Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyriforme (Kütz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kütz.) Hariot. Protoplasma 193:3–9CrossRefGoogle Scholar
  260. Motiejûnaitë J, Jucevièienë N (2005) Epidemiology of the fungus Athelia arachnoidea in epiphytic communities of broadleaved forests under strong anthropogenic impact. Ekologija 4:28–34Google Scholar
  261. Mueller UG, Wolf-Mueller B (1991) Epiphyll deterrence to the leafcutter ant Atta cephalotes. Oecologia 86:36–39CrossRefGoogle Scholar
  262. Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2007) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56PubMedCrossRefGoogle Scholar
  263. Muggia L, Gueidan C, Grube M (2010) Phylogenetic placement of some morphologically unusual members of Verrucariales. Mycologia 102:835–846PubMedCrossRefGoogle Scholar
  264. Mukhtar A, Garty J, Galun M (1994) Does the lichen alga Trebouxia occur free-living in nature: further immunological evidence. Symbiosis 17:247–253Google Scholar
  265. Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16PubMedCrossRefGoogle Scholar
  266. Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77:4249–4252PubMedCrossRefGoogle Scholar
  267. Nash TH (2008) Nitrogen, its metabolism and potential contribution ro ecosystems. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 216–233CrossRefGoogle Scholar
  268. Nelsen MP, Gargas A (2009a) Assessing clonality and chemotype monophyly in Thamnolia vermicularis (Icmadophilaceae). Bryologist 112:42–53CrossRefGoogle Scholar
  269. Nelsen MP, Gargas A (2009b) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112:404–417CrossRefGoogle Scholar
  270. Nelsen MP, Lücking R, Grube M et al (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Stud Mycol 64:135–144PubMedCrossRefGoogle Scholar
  271. Nelson SC (2008) Cephaleuros species, the plant parasitic green algae. Plant Dis 43:1–6Google Scholar
  272. Neustupa J (2003) The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwigia 76:487–505CrossRefGoogle Scholar
  273. Nyati S (2006). Photobiont diversity in Teloschistaceae (Lecanoromycetes) [PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät]. Zürich: Universität Zürich.Google Scholar
  274. Nyati S, Beck A, Honegger R (2007) Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Plant Biol 9:390–399PubMedCrossRefGoogle Scholar
  275. Nybakken L, Julkunen-Titto R (2006) UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485CrossRefGoogle Scholar
  276. Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216PubMedCrossRefGoogle Scholar
  277. Nybakken L, Helmersen A-M, Gauslaa Y, Selås V (2010) Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). J Chem Ecol 36:298–304PubMedCrossRefGoogle Scholar
  278. O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378CrossRefGoogle Scholar
  279. Ohmura Y, Kawachi M, Kasai F, Watanabe M (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109:43–59CrossRefGoogle Scholar
  280. Otalora MAG, Aragón G, Molina MC, Martínez I, Lutzoni F (2010) Disentangling the Collema–Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102:279–290PubMedCrossRefGoogle Scholar
  281. Ott S (1987) Reproductive strategies in lichens. Bibl Lichenol 25:81–93Google Scholar
  282. Ott S, Przewosnik R, Sojo F, Jahns HM (1997) The nature of cephalodia in Placopsis contortuplicatus and other species of the genus. Bibl Lichenol 67:69–84Google Scholar
  283. Pacioni G, Leonardi M, Aimola P, Ragnelli AM, Rubini A, Paolocci F (2007) Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res 111:1450–1460PubMedCrossRefGoogle Scholar
  284. Palmqvist K, Dahlman L, Jonsson AV, Nash TH (2008) The carbon economy of lichens. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 182–215CrossRefGoogle Scholar
  285. Pankewitz F, Zöllmer A, Gräser Y, Hilker M (2007) Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: Biosynthesis by the beetles. Arch Insect Biochem 662:98–108CrossRefGoogle Scholar
  286. Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in Continental Antarctica? Oecologia 135:30–38PubMedGoogle Scholar
  287. Paranagama PA, Wijeratne EM, Burns AM et al (2007a) Heptaketides from Corynespora sp. Inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705PubMedCrossRefGoogle Scholar
  288. Paranagama PA, Wijeratne EMK, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2007b) Bioactive and other naphthopyrans from Corynespora sp. Occurring in Usnea cavernosa: first report of metabolites of an endolichenic fungus. J Nat Prod 70:1700–1705PubMedCrossRefGoogle Scholar
  289. Pérez FL (1997) Microbiotic crusts in the high equatorial Andes and their influence on paramo soils. Catena 31:173–198CrossRefGoogle Scholar
  290. Pérez-Ortega S, de los Ríos A, Crespo A, Sancho LG (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am J Bot 97:738–752PubMedCrossRefGoogle Scholar
  291. Peterson EB (2000) An overlooked fossil lichen (Lobariaceae). Lichenolgist 32:289–300Google Scholar
  292. Petrini O, Hake U, Dreyfuss MM (1990) An analysis of fungal communities isolated from fruticose lichens. Mycologia 82:444–451CrossRefGoogle Scholar
  293. Piercey-Normore M (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344PubMedCrossRefGoogle Scholar
  294. Pivato B, Offre P, Marchelli S et al (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90PubMedCrossRefGoogle Scholar
  295. Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylogenetic analyses of nuclear SSU and LSU ribosomal DNA. Lichenologist 31:409–418Google Scholar
  296. Platt JL, Spatafora JW (2000) Evolutionary relationships of nonsexual lichenized fungi: molecular phylogenetic hypotheses for the genera Siphula and Thamnolia from SSU and LSU rDNA. Mycologia 92:475–487CrossRefGoogle Scholar
  297. Poelt J (1970) Das Konzept der Artenpaare bei den Flechten. Flechtensymposion 1969. Vorträge im Gesamtgebiet der Botanik. Dtsch Bot Ges NF 4:187–198Google Scholar
  298. Poelt J, Huneck S (1968) Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Österr Bot Z 115:411–422CrossRefGoogle Scholar
  299. Poelt J, Mayrhofer H (1988) Ueber Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281CrossRefGoogle Scholar
  300. Poelt J, Vězda A (1990) Ueber kurzlebige Flechten. Bibl Lichenol 38:377–394Google Scholar
  301. Poinar GO, Peterson EB, Platt JL (2000) Fossil Parmelia in New World amber. Lichenologist 32:263–269CrossRefGoogle Scholar
  302. Pöykkö H, Bačkor M, Bencúrová E, Molcanová V, Bačkorová M, Hyvärinen M (2010) Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites. Oecologia 164:423–430PubMedCrossRefGoogle Scholar
  303. Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol 150:65–75CrossRefGoogle Scholar
  304. Puel F, Largeau C, Giraud G (2008) Ocurrence of a resistant biopolymer in the outer walls of the parasitic alga Prototheca wickerhamii (Chlorococcales): ultrastructural and chemical studies. J Phycol 23:649–656CrossRefGoogle Scholar
  305. Purvis OW, Pawlik-Skowrońska B (2008) Lichens and metals. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 175–200CrossRefGoogle Scholar
  306. Purvis OW, Chimonides PDJ, Jeffries TE, Jones GC, Rusu A-M, Read H (2007) Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmos Environ 41:72–80CrossRefGoogle Scholar
  307. Qin JG (2010) Hydrocarbons from algae. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg New York, pp 2817–2826CrossRefGoogle Scholar
  308. Rai AN, Bergman B, Rasmussen U (eds) (2002) Cyanobacteria in symbiosis. Cited 1 July 2011
  309. Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060PubMedCrossRefGoogle Scholar
  310. Richardson DHS (1999) War in the world of lichens: parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol Res 103:641–650CrossRefGoogle Scholar
  311. Ridout CJ (2009) Profiles in pathogenesis and mutualism: powdery mildews. In: Deising HB (ed) The Mycota V, part 1, plant relationships. Springer, Berlin Heidelberg New York, pp 51–68Google Scholar
  312. Rikkinen J (2003) Calicioid lichens from European Tertiary amber. Mycologia 95:1032–1036PubMedCrossRefGoogle Scholar
  313. Rikkinen J, Poinar GO (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol Res 106:984–990CrossRefGoogle Scholar
  314. Rikkinen J, Poinar GO (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J Exp Bot 59:1007–1011PubMedCrossRefGoogle Scholar
  315. Rindi F, Guiry MD (2002) The genus Phycopeltis (Trentepohliaceae, Chlorophyta) in Ireland: a taxonomic and distributional reassessment. Phycologia 41:421–431CrossRefGoogle Scholar
  316. Rindi F, Guiry MD (2003) Composition and distribution of subaerial algal assemblages in Galway city, Western Ireland. Cryptog Algol 24:245–267Google Scholar
  317. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114PubMedCrossRefGoogle Scholar
  318. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  319. Rogers RW, Lange RT, Nicholas DJD (1966) Nitrogen fixation by lichens of arid soil crusts. Nature 209:96–97CrossRefGoogle Scholar
  320. Rolstad J, Rolstad E (2008) Intercalary growth causes geometric length expansion in Methuselah’s beard lichen (Usnea longissima). Botany 86:1224–1232CrossRefGoogle Scholar
  321. Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19:1209–1217PubMedCrossRefGoogle Scholar
  322. Rosentreter R, Belnap J (2001) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 31–50Google Scholar
  323. Rosentreter R, Bowler M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands. US Government Printing Office, DenverGoogle Scholar
  324. Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319CrossRefGoogle Scholar
  325. Sancho LG, de la Torre R, Horneck G et al (2007a) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7:443–454PubMedCrossRefGoogle Scholar
  326. Sancho LG, Green TGA, Pintado A (2007b) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673CrossRefGoogle Scholar
  327. Sancho LG, de la Torre R, Pintado A (2008) Lichens, new and promising material from experiments in astrobiology. Fungal Biol Rev 22:103–109CrossRefGoogle Scholar
  328. Sanders W (1989) Growth and development of the reticulate thallus in the lichen Ramalina menziesii. Amer J Bot 76:666–678CrossRefGoogle Scholar
  329. Sanders W (1992) Comparative in situ studies of thallus net development in morphologically distinct populations of the lichen Ramalina menziesii. Bryologist 95:192–204CrossRefGoogle Scholar
  330. Sanders W (2001) Preliminary light microscope observations of fungal and algal colonization and lichen thallus initiation on glass slides placed near foliicolous lichen communities within a lowland tropical forest. Symbiosis 31:85–94Google Scholar
  331. Sanders W (2002) In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from propagule germination to propagule production. Am J Bot 89:1741–1746PubMedCrossRefGoogle Scholar
  332. Sanders W (2005) Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. Lichenologist 37:373–382CrossRefGoogle Scholar
  333. Sanders WB (2006) A feeling for the superorganism: expression of plant form in the lichen thallus. Bot J Linn Soc 150:89–99CrossRefGoogle Scholar
  334. Sanders WB, Ascaso C (1995) Reiterative production and deformation of cell walls in expanding thallus nets of the lichen Ramalina menziesii (Lecanorales, Ascomycetes). Am J Bot 82:1358–1366CrossRefGoogle Scholar
  335. Sanders WB, Ascaso C (1997) Fine structural features of rhizomorphs (sensu lato) produced by four species of lichen fungi. Mycol Res 101:319–328CrossRefGoogle Scholar
  336. Sanders WB, Lücking R (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435CrossRefGoogle Scholar
  337. Sanders WB, Ascaso C, Wierzchos J (1994) Physical interactions of two rhizomorph-forming lichens with their rock substrate. Bot Acta 107:432–439Google Scholar
  338. Sanders WB, Moe RL, Ascaso C (2004) The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. Am J Bot 91:511–522PubMedCrossRefGoogle Scholar
  339. Sanders WB, Moe RL, Ascaso C (2005) Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur J Phycol 40:353–361CrossRefGoogle Scholar
  340. Schardl CL, Scott B, Florea S, Zhang D (2009) Epichloë endophytes: clavicipitaceous symbionts of grasses. In: Deising HB (ed) The Mycota IX, Plant relationships. Springer, Berlin Heidelberg New York, pp 276–306CrossRefGoogle Scholar
  341. Scheidegger C (1994) Low temperature scanning electron microscopy: the location of free and perturbed water and its role in the morphology of the lichen symbionts. Cryptog Bot 4:290–299Google Scholar
  342. Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409CrossRefGoogle Scholar
  343. Scherrer S, Honegger R (2003) Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytol 158:375–389CrossRefGoogle Scholar
  344. Scherrer S, De Vries OMH, Dudler R, Wessels JGH, Honegger R (2000) Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoria parietina and X. ectaneoides. Fungal Genet Biol 30:81–93PubMedCrossRefGoogle Scholar
  345. Scherrer S, Haisch A, Honegger R (2002) Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. New Phytol 154:175–184CrossRefGoogle Scholar
  346. Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4(e4437):1–8CrossRefGoogle Scholar
  347. Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374PubMedCrossRefGoogle Scholar
  348. Schmitt I, del Prado R, Grube M, Lumbsch HT (2009) Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Mol Phylogenet Evol 52:34–44PubMedCrossRefGoogle Scholar
  349. Schmull M, Miadlikowska J, Pelzer M et al (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103:983–1003PubMedCrossRefGoogle Scholar
  350. Schoch CL, Crous PW, Groenewald JZ et al (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15PubMedCrossRefGoogle Scholar
  351. Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285CrossRefGoogle Scholar
  352. Schultz C (2006) Remote sensing the distribution and spatiotemporal changes of major lichen communities in the Central Namib Desert. Inauguraldissertation im Fachbereich Biologie. Universität Kaiserslautern, Kaiserslautern, pp 1–320Google Scholar
  353. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedCrossRefGoogle Scholar
  354. Schüssler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83CrossRefGoogle Scholar
  355. Schwendener S (1867) Ueber die wahre Natur der Flechtengonidien. Verh Schweiz Naturforsch Ges 51:88–90Google Scholar
  356. Schwendener S (1869) Die Algentypen der Flechtengonidien. Programm für die Rectoratsfeier der Universität. Universitätsbuchdruckerei C. Schultze, BaselGoogle Scholar
  357. Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458CrossRefGoogle Scholar
  358. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83CrossRefGoogle Scholar
  359. Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58CrossRefGoogle Scholar
  360. Shirtcliffe NJ, Brian Pyatt F, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193–1197PubMedCrossRefGoogle Scholar
  361. Sikaroodi M, Lawrey JD, Hawksworth DL, Depriest PT (2001) The phylogenetic position of selected lichenicolous fungi: Hobsonia, Illosporium, and Marchandiomyces. Mycol Res 105:453–446CrossRefGoogle Scholar
  362. Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B 89:29–35PubMedCrossRefGoogle Scholar
  363. Sipman HJM (1994) Foliicolous lichens on plastic tape. Lichenologist 26:311–312Google Scholar
  364. Skaloud P, Peksa O (2008) Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). Biologia 3:869–876Google Scholar
  365. Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46PubMedCrossRefGoogle Scholar
  366. Smith CW, Aptroot A, Coppins BJ et al (2009) The lichens of Great Britain and Ireland. NHBS/British Lichen Society, LondonGoogle Scholar
  367. Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100CrossRefGoogle Scholar
  368. Spatafora J (2007) Pezizomycotina.
  369. Spatafora JW, Sung G-H, Johnson D et al (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028PubMedCrossRefGoogle Scholar
  370. Stahl E (1877) Beiträge zur Entwickelungsgeschichte der Flechten. II. Über die Bedeutung der Hymenialgonidien. Arthur Felix, Leipzig, pp 1–32Google Scholar
  371. Stenroos S, Stocker-Wörgötter E, Yoshimura I, Myllys L, Thell A, Hyvönen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247CrossRefGoogle Scholar
  372. Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104:576–581CrossRefGoogle Scholar
  373. Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200PubMedCrossRefGoogle Scholar
  374. Stocker-Wörgötter E, Hager A (2008) Culture methods for lichens and lichen symbionts. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 353–363CrossRefGoogle Scholar
  375. Stone BA, Clarke AE (1992) The chemistry and biology of (1-3)-beta-glucans. La Trobe University Press, MelbourneGoogle Scholar
  376. Sun HJ, DePriest PT, Gargas A, Rossman AY, Friedmann EI (2002) Pestalotiopsis maculans: a dominant parasymbiont in North American lichens. Symbiosis 33:215–226Google Scholar
  377. Suryanarayanan TS, Thirunavukkarasu N, Hariharan G, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:119–129Google Scholar
  378. Takano K, Ishikawa Y, Mikami H, Igarashi S, Hino S, Yoshioka T (2008) Fungal infection for cyanobacterium Anabaena smithii by two chytrids in eutrophic region of large reservoir Lake Shumarinai, Hokkaido, Japan. Limnology 9:213–218CrossRefGoogle Scholar
  379. Talbot NJ (1998) Plants and fungi: friends and enemies. Trends Microbiol 6:250–251CrossRefGoogle Scholar
  380. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202PubMedCrossRefGoogle Scholar
  381. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  382. Taylor T, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie Chert. Am J Bot 84:992–1004PubMedCrossRefGoogle Scholar
  383. Thomas B (2009) Lichens and Katrina. Loyola University Center for Environmental Communication. Cited 1 July 2011
  384. Tomescu AMF, Rothwell GW, Honegger R (2006) Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Mansanutten Sandstone, Virginia, USA. Lethaia 39:329–338CrossRefGoogle Scholar
  385. Tormo R, Recio D, Silva I, Muñoz A (2001) A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur J Phycol 36:385–390CrossRefGoogle Scholar
  386. Trapero A, Romero MA, Varo R, Sánchez ME (2003) First report of Pestalotiopsis maculans causing necrotic leaf spots in nursery plants of Arbutus unedo and Ceratonia siliqua in Spain. Plant Dis 87:1263CrossRefGoogle Scholar
  387. Trembley ML, Ringli C, Honegger R (2002a) Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol 154:185–195CrossRefGoogle Scholar
  388. Trembley ML, Ringli C, Honegger R (2002b) Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol 35:247–259PubMedCrossRefGoogle Scholar
  389. Trembley ML, Ringli C, Honegger R (2002c) Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res 106:768–776CrossRefGoogle Scholar
  390. Tschermak-Woess E (1978) Myrmecia reticulata as a phycobiont and free-living – free-living Trebouxia – the problem of Stenocybe septata. Lichenologist 10:69–79CrossRefGoogle Scholar
  391. Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) Handbook of lichenology, vol 1. CRC, Boca Raton, pp 39–92Google Scholar
  392. Tschermak-Woess E, Poelt J (1976) Vezdaea, a peculiar lichen genus, and its phycobiont. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic, London, pp 89–105Google Scholar
  393. U’Ren JM, Lutzoni F, Miadlikowska J, Arnold AE (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353PubMedCrossRefGoogle Scholar
  394. van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenogist 34:141–154Google Scholar
  395. Voegele RT, Hahn M, Mendgen K (2009) The Uredinales: cytology, biochemistry, and molecular biology. In: Deising H (ed) The Mycota, vol V, Plant relationships. Springer, Berlin Heidelberg New York, pp 69–98Google Scholar
  396. Voisey CR (2010) Intercalary growth in hyphae of filamentous fungi. Fungal Biol Rev 24:123–131CrossRefGoogle Scholar
  397. Wang Y, Niu S, Liu S, Guo L, Che Y (2010) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12:5081–5083PubMedCrossRefGoogle Scholar
  398. Wedin M, Tehler A, Gargas A (1998) Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Plant Syst Evol 209:75–83CrossRefGoogle Scholar
  399. Wedin M, Döring H, Nordin A, Tibell L (2000) Small subunit rDNA phylogeny shows the lichen families Caliciaceae and Physciaceae (Lecanorales, Ascomycotina) to form a monophyletic group. Can J Bot 78:246–254Google Scholar
  400. Wedin M, Baloch E, Grube M (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae. Taxon 51:655–660CrossRefGoogle Scholar
  401. Wedin M, Wiklund E, Jørgensen PM, Ekman S (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Mol Phylogenet Evol 53:862–871PubMedCrossRefGoogle Scholar
  402. Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97:821–830PubMedCrossRefGoogle Scholar
  403. Wessels JGH (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45PubMedCrossRefGoogle Scholar
  404. Whiteford J, Spanu P (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391–400PubMedCrossRefGoogle Scholar
  405. Wiermann R, Ahlers F, Schmitz-Thom I (2001) Sporopollenin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1. Wiley-VCH, Weinheim, pp 209–229Google Scholar
  406. Wijeratne EM, Bashyal BP, Gunatilaka MK, Arnold AE, Gunatilaka AA (2010) Maximizing chemical diversity of fungal metabolites: biogenetically related heptaketides of the endolichenic fungus Corynespora sp. J Nat Prod 73:1156–1159PubMedCrossRefGoogle Scholar
  407. Winchester V (1988) An assessment of lichenometry as a method for dating recent stone movements in two stone circles in Cumbria and Oxfordshire. Bot J Linn Soc 96:57–68CrossRefGoogle Scholar
  408. Winchester V, Harrison S (2000) Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonia Icefield, Chile. Geomorphology 34:181–194CrossRefGoogle Scholar
  409. Wirth V (1985) Zur Ausbreitung, Herkunft und Ökologie anthropogen geförderter Rinden- und Holzflechten. Tüxenia 5:523–536Google Scholar
  410. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646PubMedCrossRefGoogle Scholar
  411. Wösten HAB, Schuren FHJ, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854PubMedGoogle Scholar
  412. Xu H, Deckert RJ, Garbary DJ (2008) Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. Nodosum (phaeophyceae) and mycophycias ascophylli (ascomycetes). Botany 86:185–193CrossRefGoogle Scholar
  413. Yahr R, Vilgalys R, Depriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378PubMedCrossRefGoogle Scholar
  414. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020PubMedCrossRefGoogle Scholar
  415. Zedda L, Rambold G (2009) Diversity and ecology of soil lichens in the Knersvlakte (South Africa). Bryologist 112:19–29CrossRefGoogle Scholar
  416. Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599–610CrossRefGoogle Scholar
  417. Zhang F, Liu S, Lu X, Guo L, Zhang H, Che Y (2009) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72:1782–1785PubMedCrossRefGoogle Scholar
  418. Ziegler R (1997) Fossil organosilicon compounds- a type of silicification diagenetically developed in Triassic vascular plant cuticles and thallophytes. Documenta naturae 112, vol 1. Documenta Naturae, Munich, pp 1–24Google Scholar
  419. Ziegler R (2002) Fossiler Pflanzenmoder aus dem Keuper. Documenta naturae 112, vol 2. Documenta Naturae, Munich, pp 1–65Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Plant BiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations