Advertisement

Are Smart Products Foiling Automated Design?

  • Patrick Klein
  • Johannes Lützenberger
  • Klaus-Dieter Thoben
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Design Automation (DA) implements the idea of deriving the physical design of a product automatically from within codified engineering knowledge. If a product is no longer limited to be a physical device, it should be analysed if the idea of DA can be enhanced or if DA becomes obsolete for smart products. The authors believe that DA can even play a major role for the smart products development. Thus this paper additionally aims to provide a concept for an enhancement of DA. Instead of case based and locally implemented solutions, the concept relies on a central knowledge-based system in order to process the smart layer on top of the geometrical design. The proposed system should be grounded upon an ontology in order to represent the physical and the virtual domain at once. This way different kinds of product development applications can rely on one central knowledge-base.

Keywords

Smart Products Design Automation KBE User-Centered Design Collaborative Design Ontologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buurman, R.D.: User-centred design of smart products. Ergonomics 40(10), S.1159–S.1169 (1997)Google Scholar
  2. 2.
    Hazenberg, W., Huisman, M.: Meta Products: Building the Internet of Things. Bis Publishers (2012)Google Scholar
  3. 3.
    Skarka, W.: Application of MOKA methodology in generative model creation using CATIA. Engineering Applications of Artificial Intelligence 20(5), S.677–S.690 (2007)Google Scholar
  4. 4.
    Nacsa, J., Bueno, R., Alzaga, A., Kovács, G. L.: Knowledge management support for machine tool designers using expert enablers. International Journal of Computer Integrated Manufacturing 18(7), S.561–S.571 (2005)Google Scholar
  5. 5.
    Kulon, J., Broomhead, P., Mynors, D.: Applying knowledge-based engineering to traditional manufacturing design. The International Journal of Advanced Manufacturing Technology 30(9), S.945–S.951 (2006)Google Scholar
  6. 6.
    Danjou, S., Lupa, N., Koehler, P.: Approach for Automated Product Modeling Using Knowledge-Based Design Features. Computer-Aided Design & Applications 5(5), S.622–S.629 (2008)Google Scholar
  7. 7.
    Penoyer, J.A., Burnett, G., Fawcett, D.J., Liou, S. Y.: Knowledge based product life cycle systems: principles of integration of KBE and C3P. Computer-Aided Design 32(5-6), S.311–S.320 (2000)Google Scholar
  8. 8.
    Mühlhäuser, M.: Smart products: An introduction. Constructing Ambient Intelligence, S.158–S.164 (2008)Google Scholar
  9. 9.
    Maass, W., Varshney, U.: Preface to the Focus Theme Section:’Smart Products’. Electronic Markets 18(3), S.211–S.215 (2008)Google Scholar
  10. 10.
    Milton, N.: Knowledge technologies. Polimetrica, Monza (2008)Google Scholar
  11. 11.
    Prasad, B.: What Distinguishes KBE from Automation (2005), http://legacy.coe.org/newsnet/Jun05/knowledge.cfm (accessed: Dezember 02, 2009)
  12. 12.
    Bevan, N., Curson, I.: Planning and implementing user-centred design. In: CHI 1999 Extended Abstracts on Human Factors in Computing Systems, pp. S.137–S.138 (1999)Google Scholar
  13. 13.
    Verhagen, W.J.C., Bermell-Garcia, P., van Dijk, R.E.C., Curran, R.: A critical review of Knowledge-Based Engineering: An identification of research challenges. Advanced Engineering Informatics 26(1), S.5–S.15 (2012)Google Scholar
  14. 14.
    Verhagen, W.J.C., Curran, R.: Knowledge-Based Engineering Review: Conceptual Foundations and Research Issues. New World Situation: New Directions in Concurrent Engineering, S.267–S.276 (2010)Google Scholar
  15. 15.
    C. IBM, IBM - CATIA Product Synthesis Discipline - All products in this discipline (2009), http://www-01.ibm.com/software/applications/plm/catiav5/disciplines/prodsynth/products.html (accessed: Dezember 08, 2009)
  16. 16.
    McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C Recommendation 10(2004-03), S.10 (2004)Google Scholar
  17. 17.
    Ansaldi, S., Bragatto, P., Camossi, E., Giannini, F., Monti, M., Pittiglio, P.: A know-ledge-based tool for risk prevention on pressure equipments. Computer-Aided Design & Applications 3(1-4), S.99–S.108 (2006)Google Scholar
  18. 18.
    Franke, M., Klein, P., Schröder, L., Thoben, K.D.: Ontological semantics of standards and plm repositories in the product development phase. In: Proc. 20th CIRP Design Conference, pp. S.473–S.482 (2010)Google Scholar
  19. 19.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission 21, S.79 (2004)Google Scholar
  20. 20.
    RuleML Homepage, http://ruleml.org/ (accessed: November 28, 2012)
  21. 21.
    W3C, Report Work on the SSN ontology - Semantic Sensor Network Incubator Group, http://www.w3.org/2005/Incubator/ssn/wiki/Report_Work_on_the_SSN_ontology (accessed: November 23, 2012)
  22. 22.
    Fan, I.S., Bermell-Garcia, P.: International standard development for knowledge based engineering services for product lifecycle management. Concurrent Engineering 16(4), S.271–S.277 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrick Klein
    • 1
  • Johannes Lützenberger
    • 1
  • Klaus-Dieter Thoben
    • 1
  1. 1.IKAPBIBA – Bremer Institut für Produktion und Logistik GmbHBremenGermany

Personalised recommendations