Advertisement

Tolerance Specification Optimization for Economic and Ecological Sustainability

  • Steven Hoffenson
  • Andreas Dagman
  • Rikard Söderberg
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

In the final stages of product development, dimensional tolerances are specified by designers to ensure high functionality at low costs. A traditional approach to this decision-making process is to minimize economic losses to the manufacturer and the consumer. This paper presents a new approach for tolerance allocation optimization that considers sustainability not only from economic costs but also ecological costs. The framework is formulated as a multi-objective optimization problem and explored with a case study on the design of an automotive body panel. Results of the case study include Pareto frontiers of non-dominated optimal solutions along with a parametric study to explore the influence of material choice on the results.

Keywords

tolerance allocation variation propagation sustainability cost minimization multi-objective optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hong, Y.S., Chang, T.C.: A Comprehensive Review of Tolerancing Research. Int. J. Prod. Res. 40, 2425–2459 (2002)MATHCrossRefGoogle Scholar
  2. 2.
    Fortini, E.T.: Dimensioning for Interchangeable Manufacture. Industrial Press, New York (1967)Google Scholar
  3. 3.
    Bjørke, O.: Computer-Aided Tolerancing. ASME Press, New York (1989)Google Scholar
  4. 4.
    Turner, J.U., Wozny, M.J.: Tolerances in Computer-Aided Geometric Design. The Visual Computer 3, 214–226 (1987)CrossRefGoogle Scholar
  5. 5.
    Shah, J.J., Ameta, G., Shen, Z., Davidson, J.: Navigating the Tolerance Analysis Maze. CAD and App. 4, 705–718 (2007)Google Scholar
  6. 6.
    Söderberg, R., Lindkvist, L.: Computer Aided Assembly Robustness Evaluation. J. Eng. Des. 10, 165–181 (1999)CrossRefGoogle Scholar
  7. 7.
    Chase, K.W., Parkinson, A.R.: A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies. Res. in Eng. Des. 3, 23–37 (1991)CrossRefGoogle Scholar
  8. 8.
    Lööf, J., Hermansson, T., Söderberg, R.: An Efficient Solution to the Discrete Least-Cost Tolerance Allocation Problem with General Loss Functions. In: Davidson, J.K. (ed.) Models for Computer Aided Tolerancing in Design and Manufacturing, pp. 1148–1158. Springer, Dordrecht (2007)Google Scholar
  9. 9.
    Ostwalt, P.F., Huang, J.: A Method for Optimal Tolerance Selection. J. Eng. for Industry 99, 558–565 (1977)CrossRefGoogle Scholar
  10. 10.
    Choi, H.G.R., Park, M.H., Salisbury, E.: Optimal Tolerance Allocation with Loss Functions. J. Man. Sci. Eng. 122, 529–535 (2000)CrossRefGoogle Scholar
  11. 11.
    Ding, Y., Jin, J., Ceglarek, D., Shi, J.: Process-Oriented Tolerance Synthesis for Multistage Manufacturing Systems. In: ASME International Mechanical Engineering Congress and Exposition (2000)Google Scholar
  12. 12.
    Li, Z., Izquierdo, L.E., Kokkolaras, M., Hu, S.J., Papalambros, P.Y.: Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly. J. Man. Sci. Eng. 130, 0445011–0445016 (2008)Google Scholar
  13. 13.
    Soderberg, R.: Tolerance Allocation Considering Customer and Manufacturer Objectives. In: Gilmore, B.J. (ed.) Advances in Design Automation, DE-vol. 65-2, pp. 149–157. ASME, Albuquerque (1993)Google Scholar
  14. 14.
    Cheng, B.W., Maghsoodloo, S.: Optimization of Mechanical Assembly Tolerances by Incorporating Taguchi’s Quality Loss Function. J. Man. Sys. 14, 264–276 (1995)CrossRefGoogle Scholar
  15. 15.
    Jeang, A.: An Approach of Tolerance Design for Quality Improvement and Cost Reduction. Int. J. of Prod. Res. 35, 1193–1211 (1997)MATHCrossRefGoogle Scholar
  16. 16.
    Taguchi, G., Elsayed, E.A., Hsiang, T.: Quality Engineering in Production Systems. McGraw-Hill, Columbus (1989)Google Scholar
  17. 17.
    Evans, D.H.: Statistical Tolerancing: The State of the Art, Part I: Background. J. Qual. Tech. 6, 188–195 (1974)Google Scholar
  18. 18.
    Kane, V.E.: Process Capability Indices. J. Qual. Tech. 18, 41–52 (1986)Google Scholar
  19. 19.
    Vigon, B.W., Tolle, D.A., Cornaby, B.W., Latham, H.C.: Life-Cycle Assessment: Inventory Guidelines and Principles. Technical Report, Environmental Protection Agency, Cincinnati (1993)Google Scholar
  20. 20.
    Taghizadeh, A., Dagman, A., Almefelt, L.: Evaluation of Four Tools for Environmental Impact Life Cycle Assessment in Sustainable Product Development. In: 17th CIRP International Conference on Life Cycle Engineering. University of Technology Press (2010)Google Scholar
  21. 21.
    Steen, B.: A Systematic Approach to Environmental Priority Strategies in Product Development (EPS). Version 2000 – General System Characteristics. Technical report, Chalmers University of Technology, Technical Environmental Planning (1999)Google Scholar
  22. 22.
    The Netherlands Ministry of Housing, Spatial Planning and the Environment: Eco-indicator 99 Manual for Designers. Manual (2000)Google Scholar
  23. 23.
    Lutsey, N.: Review of Technical Literature and Trends Related to Automobile Mass-Reduction Technology. Technical report, California Air Resources Board (2010)Google Scholar
  24. 24.
    Ullman, D.G.: The Mechanical Design Process, 3rd edn. McGraw Hill, Boston (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steven Hoffenson
    • 1
  • Andreas Dagman
    • 1
  • Rikard Söderberg
    • 1
  1. 1.Department of Product and Production DevelopmentChalmers University of TechnologyGothenburgSweden

Personalised recommendations